Perbandingan Metode Single Exponential Smoothing Dan Metode Double Exponential Smoothing Untuk Memprediksi Konsumsi Energi Listrik Di PT. PLN (Persero) ULP Lhokseumawe

Authors

  • Meisya Syahtira Universitas Malikussaleh
  • Nurdin Nurdin Program Studi Magister Teknologi Informasi, Fakultas Teknik, Universitas Malikussaleh
  • Fajriana Fajriana Program Studi Magister Teknologi Informasi, Fakultas Teknik, Universitas Malikussaleh

DOI:

https://doi.org/10.25077/TEKNOSI.v11i3.2025.350-360

Keywords:

Single Exponential Smoothing, Double Exponential Smoothing, Prediksi Energi Listrik, Perbandingan Akurasi

Abstract

Electricity is a vital necessity for society and serves as a key driver across various sectors, including households, businesses, and industries. With the increasing demand for electricity each year, PT. PLN (Persero) ULP Lhokseumawe is required to plan its distribution and power capacity accurately. Inaccurate forecasting may cause imbalances between supply and demand. This study compares two forecasting methods, namely Single Exponential Smoothing (SES) and Double Exponential Smoothing (DES), to predict electricity consumption in the Lhokseumawe region. The dataset consists of monthly electricity consumption per sub-district from 2022 to 2024, with forecasting projections up to 2027. The research stages include data collection, preprocessing, application of SES and DES methods, accuracy evaluation using Mean Absolute Percentage Error (MAPE), and the design of a web-based system using Python and Flask. The results indicate that the SES method achieved higher accuracy with a MAPE value of 5.85%, while the DES method obtained a MAPE value of 7.87%. These findings suggest that SES is more suitable for data with random fluctuations, whereas DES is better applied to data with trend patterns. By comparing the MAPE values, this study provides insights into which method is more optimal for electricity consumption forecasting in Lhokseumawe. The outcomes are expected to contribute practically to PT. PLN (Persero) ULP Lhokseumawe in formulating more effective and efficient electricity distribution strategies.

References

Muallif, “Pengertian Energi Listrik, Sumber Pembangkit, Transmisi, dan Distribusi: Penggunaan, Konservasi, dan Masa Depan.” Accessed: Dec. 04, 2024. [Online]. Available: https://an-nur.ac.id/blog/pengertian-energi-listrik-sumber-pembangkit-transmisi-dan-distribusi-penggunaan-konservasi-dan-masa-depan.html

M. Sadli, W. Fuadi, F. Abdurrahman, N. Islami, and M. Ihsan, “Fuzzy clustering means algorithm analysis for power demand prediction at PT PLN Lhokseumawe,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 19, no. 4, pp. 1145–1151, 2021, doi: 10.12928/TELKOMNIKA.v19i4.14941.

A. Adamma Diwanda, I. N. Setiawan, and W. Setiawan, “Peramalan Kebutuhan Energi Listrik Jangka Panjang Di Provinsi Bali Rentang Tahun 2020 – 2030 Menggunakan Neural Network,” J. SPEKTRUM, vol. 8, no. 2, p. 99, 2021, doi: 10.24843/spektrum.2021.v08.i02.p12.

Kementerian ESDM, “Rencana Umum Ketenagalistrikan Nasional (RUKN) 2024-2060,” Direktorat Jenderal Ketenagalistrikan, Kementerian Energi dan Sumber Daya Mineral. Accessed: Mar. 10, 2025. [Online]. Available: https://gatrik.esdm.go.id/frontend/download_index/?kode_category=rukn

A. M. H. Pardede et al., “Application of Data Mining Prediction of Electricity Deviation Flow Using Metode Backpropogation at PLN Binjai Area,” J. Phys. Conf. Ser., vol. 1363, no. 1, 2019, doi: 10.1088/1742-6596/1363/1/012067.

PT PLN Persero, “Profil Perusahaan.” Accessed: Dec. 04, 2024. [Online]. Available: https://web.pln.co.id/tentang-kami/profil-perusahaan

A. Hasibuan et al., “Rainy and dry seasons impact on electricity demand in Indonesia,” Sinergi (Indonesia), vol. 28, no. 3, pp. 545–556, 2024, doi: 10.22441/sinergi.2024.3.011.

J. N. A. Aziza, “Perbandingan Metode Moving Average, Single Exponential Smoothing, dan Double Exponential Smoothing Pada Peramalan Permintaan Tabung Gas LPG PT Petrogas Prima Services,” J. Teknol. dan Manaj. Ind. Terap., vol. 1, no. I, pp. 35–41, 2022, doi: 10.55826/tmit.v1ii.8.

R. M. Putra, “Analisis Perbandingan Metode Peramalan Single Exponential Smoothing dan Double Exponential Smoothing pada Harga Pembukaan Harian XAU/IDR,” KERNEL J. Ris. Inov. Bid. Inform. dan Pendidik. Inform., vol. 4, no. 1, pp. 33–40, 2024, doi: 10.31284/j.kernel.2023.v4i1.5333.

V. Gavinda, Nurdin, and Fajriana, “Predicting Electricity Consumption in Aceh Province Using the Markov Chain Monte Carlo Method,” Int. J. Eng. Sci. Inf. Technol., vol. 5, no. 1, pp. 128–135, 2025, doi: 10.52088/ijesty.v5i1.678.

D. Dhivari, B. Aguchino, and Paduloh, “Perbandingan Forecasting Menggunakan Metode Single Dan Double Exponential Smoothing Pada Penjualan Roti (Studi kasus Elud Cake and Bakery),” J. Ekon. dan Bisnis, vol. 2, no. 5, pp. 551–557, 2024, [Online]. Available: https://j-economics.my.id/index.php/home/issue/view/12

A. Ansyari, “Perbandingan Metode SES (Single Exponential Smoothing) dan DES (Double Exponential Smoothing) untuk Peramalan Wisatawan Domestik di Bali,” Indones. J. Thousand Literacies IJTL, vol. 1, no. 1, pp. 1–9, 2023, doi: 10.57254/ijtl.v1i1.11.

S. K. M. T. Ir. Billy Eden William Asrul, S. P. M. S. Sitti Zuhriyah, and S. K. M. S. Herlinah, Sistem Pendukung Keputusan Dengan Metode Double Exponential Smoothing. Surabaya: Cipta Media Nusantara, 2022. [Online]. Available: https://books.google.co.id/books?id=Hz5vEAAAQBAJ

Z. Alwi, F. Latuconsina, J. M. Pelletimu, and S. B. Loklomin, “Comparion of Single Exponential Smoothing and Double Exponential Smoothing Methods in Predicting the Number of Examination Samples,” Motekar J. Educ. Sci., vol. 1, no. 1, 2024.

H. ’ Dyah, P. Habsari, I. Purnamasari, and D. Yuniarti, “Menggunakan Metode Double Exponenyial Soothing dan Verivikasi Hasil Peramalan Menggunakan Grafik Pengendali Tracking Signal (Studi Kasus: Data IHK Provinsi Kalimantan Timur) Forecasting Uses Double Exponential Smoothing Method And Forecasting Verification Uses Tracking Signal Control Chart,” BAREKENG J. Ilmu Mat. dan Terap. Peramalan, vol. 14, no. 1, pp. 13–22, 2020, [Online]. Available: https://ojs3.unpatti.ac.id/index.php/barekeng/

S. P. Wisesa, A. S. Prayogi, and T. M. Fahrudin, “Pemodelan Dan Evaluasi Trend Forecasting Pada Kondisi Korban Kecelakaan Lalu Lintas,” J. Sist. Cerdas, vol. 01, no. 02, pp. 56–66, 2018.

H. D. E. Sinaga, N. Irawati, and S. Informasi, “HOMMY Perbandingan_Double_Moving_Average_Denga,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. IV, no. 2, pp. 197–204, 2018.

R. Maulid, “Python Machine Learning.” Accessed: Dec. 06, 2024. [Online]. Available: https://dqlab.id/mengenal-flask-library-machine-learning-python-idaman-developer

R. V Palit, Y. D. Y. Rindengan, and A. S. M. Lumenta, “Rancangan Sistem Informasi Keuangan Berbasis Web Di Jemaat GMIM Bukit Moria Malalayang,” E-Journal Tek. Elektro dan Komput. vol, vol. 4, no. 7, pp. 1–7, 2015.

Submitted

2025-10-02

Accepted

2025-12-14

Published

2026-01-14

How to Cite

[1]
M. Syahtira, N. Nurdin, and F. Fajriana, “Perbandingan Metode Single Exponential Smoothing Dan Metode Double Exponential Smoothing Untuk Memprediksi Konsumsi Energi Listrik Di PT. PLN (Persero) ULP Lhokseumawe”, TEKNOSI, vol. 11, no. 3, pp. 350–360, Jan. 2026.

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.