Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation

Hasdi Putra(1*), Nabilah Ulfa Walmi(2)
(1) Jurusan Sistem Informasi, Universitas Andalas
(2) Jurusan Sistem Informasi, Universitas Andalas
(*) Corresponding Author



Abstrak


Prediksi produksi padi menjadi penting dilakukan untuk menunjang pembangunan nasional sektor pertanian pada suatu negara atau wilayah. Artificial Neural Network (ANN) termasuk metode yang terbaik dalam melakukan prediksi. Masalah utamanya adalah bagaimana menentukan jumlah neuron dan hidden layer yang optimal sehingga akurasi prediksinya tinggi. Artikel ini bertujuan untuk merancang arsitektu ANN unutk melakukan prediksi terhadap produksi padi menggunakan ANN dengan algortima backpropagation. Tahapan penelitian yang dilakukan adalah mengumpulkan data produksi padi, melakukan pre-processing data, memproses prediksi, dan pengujian akurasi dan error serta implementasi. Dalam memproses prediksi dilakukan sesuai dengan rancangan model prediksi, yaitu parameter epoch, momentum, learning rate, hidden layer untuk menghasilkan keakuratan yang tinggi. Temuan yang diperolah berupa rancangan optimal untuk melakukan prediksi yaitu dengan menggunakan multilayer. Hasil pengujian sistem prediksi produksi padi yang terdiri dari 75 kali pengujian pada di 19 daerah di Sumatera Barat, diperoleh tingkat akurasi mencapai 88,14% atau dengan tingkat error yang relatif rendah yaitu 11,86%.

Kata Kunci


prediksi produksi padi, neural network, backpropagation, akurasi


Teks Lengkap:

PDF


Referensi


[1] H. Sutanta, A. R. Gunawan, and Y. Wibisono, “Calculation of rice field embankment coefficient using high-resolution satellite imagery,” IOP Conf. Ser. Earth Environ. Sci., vol. 500, p. 012049, Jul. 2020.

[2] Badan Pusat Statistik, “Luas Panen dan Produksi Padi di Indonesia 2019 Hasil Survey Kerangka Sampel Area (KSA),” 2020. [Online]. Available: https://www.bps.go.id/website/materi_ind/materiBrsInd-20200204112508.pdf.

[3] M. Al-Amin, D. Z. Karim, and T. A. Bushra, “Prediction of rice disease from leaves using deep convolution neural network towards a digital agricultural system,” 2019 22nd International Conference on Computer and Information Technology, ICCIT 2019. 2019.

[4] D. Shah, H. Isah, and F. Zulkernine, “Stock market analysis: A review and taxonomy of prediction techniques,” Int. J. Financ. Stud., vol. 7, no. 2, 2019.

[5] H. Putra, N. U. Walmi, and A. D. Kartika, “Data Mining Approach For Prediction Of Rice Production Using Backpropagation Artificial Neural Network Method,” in The International Conference on ASEAN 2019, 2019, pp. 321–326.

[6] N. R. Dzakiyullah, B. Hussin, C. Saleh, and A. M. Handani, “Comparison neural network and support vector machine for production quantity prediction,” Adv. Sci. Lett., vol. 20, no. 10–12, pp. 2129–2133, 2014.

[7] S. García, J. Derrac, J. R. Cano, and F. Herrera, “Prototype selection for nearest neighbor classification: Taxonomy and empirical study,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 3, pp. 417–435, 2012.

[8] G. F. Fan, Y. H. Guo, J. M. Zheng, and W. C. Hong, “Application of the weighted k-nearest neighbor algorithm for short-term load forecasting,” Energies, vol. 12, no. 5, 2019.

[9] N. A. Almansour et al., “Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study,” Comput. Biol. Med., vol. 109, no. October 2018, pp. 101–111, 2019.

[10] S. M. Gorade and P. A. Deo, “A Study Some Data Mining Classification Techniques,” Int. J. Mod. Trends Eng. Res., vol. 4, no. 1, pp. 210–215, 2017.

[11] J. Fei and C. Lu, Adaptive Sliding Mode Control of Dynamic Systems Using Double Loop Recurrent Neural Network Structure, vol. 29, no. 4. 2018.

[12] B. Das, B. Nair, V. K. Reddy, and P. Venkatesh, “Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India,” Int. J. Biometeorol., vol. 62, no. 10, pp. 1809–1822, 2018.

[13] L. Wang, Y. Zeng, and T. Chen, “Back propagation neural network with adaptive differential evolution algorithm for time series forecasting,” Expert Syst. Appl., vol. 42, no. 2, pp. 855–863, 2015.

[14] H. Elarabi, “Comparison of Different Methods of Application of Neural Network on Soil Profile of Khartoum State,” Int. J. Sci. Technol. Soc., vol. 2, no. 3, p. 59, 2014.

[15] N. A. Hamid, N. M. Nawi, R. Ghazali, and M. N. M. Salleh, “Accelerating learning performance of back propagation algorithm by using adaptive gain together with adaptive momentum and adaptive learning rate on classification problems,” Int. J. Softw. Eng. its Appl., vol. 5, no. 4, pp. 31–44, 2011.

[16] O. Krestinskaya, K. N. Salama, and A. P. James, “Learning in memristive neural network architectures using analog backpropagation circuits,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 66, no. 2, pp. 719–732, 2019.

[17] G. Amaral et al., Modern Database Management, vol. 369, no. 1. 2013.

[18] Laurene V. Fausett, Fundamentals Of Neural Networks: Architectures, Algorithms And Applications, no. 888. 2007.

[19] O. M. Rezapour, L. T. Shui, and A. A. Dehghani, “Review of genetic algorithm model for suspended sediment estimation,” Aust. J. Basic Appl. Sci., vol. 4, no. 8, pp. 3354–3359, 2010.

[20] P. C. Chang, Y. W. Wang, and C. H. Liu, “The development of a weighted evolving fuzzy neural network for PCB sales forecasting,” Expert Syst. Appl., vol. 32, no. 1, pp. 86–96, 2007.

[21] P. K. Sethy, N. K. Barpanda, A. K. Rath, and S. K. Behera, “Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network,” J. Ambient Intell. Humaniz. Comput., no. 0123456789, 2020.

[22] A. Wanto, A. P. Windarto, D. Hartama, and I. Parlina, “Use of Binary Sigmoid Function And Linear Identity In Artificial Neural Networks For Forecasting Population Density,” IJISTECH (International J. Inf. Syst. Technol., vol. 1, no. 1, p. 43, 2017.

[23] I. N. da Silva, D. H. Spatti, R. A. Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves, “Artificial neural networks: A practical course,” Artif. Neural Networks A Pract. Course, pp. 1–307, 2016.

[24] G. Deshpande, P. Wang, D. Rangaprakash, and B. Wilamowski, “Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data,” IEEE Trans. Cybern., vol. 45, no. 12, pp. 2668–2679, 2015.

[25] R. B. Santos, M. Rupp, S. J. Bonzi, and A. M. F. Fileti, “Comparison between multilayer feedforward neural networks and a radial basis function network to detect and locate leaks in pipelines transporting gas,” Chem. Eng. Trans., vol. 32, pp. 1375–1380, 2013.

[26] A. A. Heidari, H. Faris, I. Aljarah, and S. Mirjalili, “An efficient hybrid multilayer perceptron neural network with grasshopper optimization,” Soft Comput., vol. 23, no. 17, pp. 7941–7958, 2019.

[27] F. S. Panchal and M. Panchal, “Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Network,” Int. J. Comput. Sci. Mob. Comput., vol. 311, no. 11, pp. 455–464, 2014.

[28] V. T. Widyaningrum and A. S. Romadhon, “Pengaruh Pemberian Momentum Pada,” Semin. Nas. Sains dan Teknol. 2014, no. November, 2014.

[29] V. Prema and K. Uma Rao, “Interactive Graphical User Interface (GUI) for Wind Speed Prediction Using Wavelet and Artificial Neural Network,” J. Inst. Eng. Ser. B, vol. 99, no. 5, pp. 467–477, 2018.

[30] A. Rohani, M. H. Abbaspour-Fard, and S. Abdolahpour, “Prediction of tractor repair and maintenance costs using Artificial Neural Network,” Expert Syst. Appl., vol. 38, no. 7, pp. 8999–9007, 2011.

[31] E. Lee, Y. D. Seo, and Y. G. Kim, “Self-adaptive framework based on MAPE loop for internet of things,” Sensors (Switzerland), vol. 19, no. 13, pp. 1–24, 2019.

[32] Z. CÖMERT and A. KOCAMAZ, “A Study of Artificial Neural Network Training Algorithms for Classification of Cardiotocography Signals,” Bitlis Eren Univ. J. Sci. Technol., vol. 7, no. 2, pp. 93–103, 2017.

[33] G. Ramadhona, B. D. Setiawan, and F. A. Bachtiar, “Prediksi Produktivitas Padi Menggunakan Jaringan Syaraf Tiruan Backpropagation,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 12, pp. 6048–6057, 2018.


Artikel Statistik

Abstrak telah dilihat : 8976 kali
PDF telah dilihat : 4195 kali

Refbacks

  • Saat ini tidak ada refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Alamat Redaksi :
Departemen Sistem Informasi, Fakultas Teknologi Informasi
Universitas Andalas
Kampus Limau Manis, Padang 25163, Sumatera Barat

email: teknosi@fti.unand.ac.id

  Jumlah Pengunjung :

 

Creative Commons License
This work by JSI-Unand and licensed under a CC BY-SA 4.0 International License.