Pemodelan Text Mining dalam Pengkodean Penyakit Pasien Berdasar Kode ICD 10
(1) Teknik Informatika, Fakultas Teknologi Industri Universitas Islam Indonesia
(2) Teknik Informatika, Fakultas Teknologi Industri Universitas Islam Indonesia
(*) Corresponding Author
Abstrak
Kata Kunci
Teks Lengkap:
PDFReferensi
[1]
Chen, Y., Lu, H., & Li, L. (2017). Automatic ICD-10 coding algorithm using an improved longest common subsequence based on semantic similarity. PloS one, 12(3), e0173410.
[2]
Dalianis, H. (2018). Clinical text mining: Secondary use of electronic patient records. Springer Nature.
[3]
Agustine, D. M., & Pratiwi, R. D. (2017). Hubungan Ketepatan Terminologi Medis dengan Keakuratan Kode Diagnosis Rawat Jalan oleh Petugas Kesehatan di Puskesmas Bambanglipuro Bantul. Jurnal Kesehatan Vokasional, 2(1), 113-121.
[4]
Zhou, L., Cheng, C., Ou, D., & Huang, H. (2020). Construction of a semi-automatic ICD-10 coding system. BMC medical informatics and decision making, 20, 1-12.
[5]
Pereira, L., Rijo, R., Silva, C., & Agostinho, M. (2013). ICD9-based text mining approach to children epilepsy classification. Procedia Technology, 9, 1351-1360.
.
[6]
Ross, M. K., Wei, W., & Ohno-Machado, L. (2014). “Big data” and the electronic health record. Yearbook of medical informatics, 23(01), 97-104.
.
[7]
Mardi, Y. (2018). Data Mining Rekam Medis Untuk Menentukan Penyakit Terbanyak Menggunakan Decision Tree C4. 5. Jurnal Sains dan Informatika: Research of Science and Informatic, 4(1), 40-53.
[8]
Widyastuti, N. N., Bijaksana, A. A., & Sardi, I. L. (2018). Analisis word2vec untuk perhitungan kesamaan semantik antar kata. eProceedings of Engineering, 5(3).
.
[9]
J. Nielsen, "Usability 101: Introduction to Usability," 2012. [Online]. Available: https://www.nngroup.com/articles/usability-101-introduction-to-usability/. [Accessed Januari 2022].
[10]
Widyastuti, N. N., Bijaksana, A. A., & Sardi, I. L. (2018). Analisis word2vec untuk perhitungan kesamaan semantik antar kata. eProceedings of Engineering, 5(3).
[11]
D. R. Prajapat, "Text Classification: BERT vs DNN," 14 Februari 2020. [Online]. Available: https://eng.zemosolabs.com/text-classification-bert-vs-dnn-b226497c9de7. [Accessed 31 Desember 2021].
[12]
Mahmoud, R., El-Bendary, N., Mokhtar, H. M., & Hassanien, A. E. (2014, December). ICF based automation system for spinal cord injuries rehabilitation. In 2014 9th International Conference on Computer Engineering & Systems (ICCES) (pp. 192-197). IEEE.
[13]
Raja, U., Mitchell, T., Day, T., & Hardin, J. M. (2008). Text mining in healthcare. Applications and opportunities. J Healthc Inf Manag, 22(3), 52-6.
[14]
Wang, S. M., Chang, Y. H., Kuo, L. C., Lai, F., Chen, Y. N., Yu, F. Y., ... & Chung, Y. (2020). Using Deep Learning for Automatic Icd-10 Classification from FreeText Data. Eur J Biomed Inform, 16(1), 1-10.
[15]
Wang, Y., Afzal, N., Fu, S., Wang, L., Shen, F., Rastegar-Mojarad, M., & Liu, H. (2020). MedSTS: a resource for clinical semantic textual similarity. Language Resources and Evaluation, 54, 57-72.
[16]
Zhou, L., Cheng, C., Ou, D., & Huang, H. (2020). Construction of a semi-automatic ICD-10 coding system. BMC medical informatics and decision making, 20, 1-12.
[17]
Boytcheva, S. (2011, September). Automatic matching of ICD-10 codes to diagnoses in discharge letters. In Proceedings of the second workshop on biomedical natural language processing (pp. 11-18).
Artikel Statistik
PDF telah dilihat : 10 kali
Refbacks
- Saat ini tidak ada refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
![]() | Alamat Redaksi : Departemen Sistem Informasi, Fakultas Teknologi Informasi Universitas Andalas Kampus Limau Manis, Padang 25163, Sumatera Barat email: teknosi@fti.unand.ac.id |
Jumlah Pengunjung :
This work by JSI-Unand and licensed under a CC BY-SA 4.0 International License.