Penerapan Metode Clustering Pada Penjualan Makanan Dan Minuman Dalam Menentukan Strategi Marketing

Authors

  • Evasaria Magdalena Sipayung Program Studi Informatika, Fakultas Teknologi dan Desain, Universitas Bunda Mulia https://orcid.org/0000-0002-6427-4380
  • Eufrasia Paskasius Program Studi Informatika, Fakultas Teknologi dan Desain, Universitas Bunda Mulia

DOI:

https://doi.org/10.25077/TEKNOSI.v11i01.2025.48-56

Keywords:

Clustering, Data Mining, Data Penjualan, K-Means, Basis Data, Strategi Marketing

Abstract

Business competition including restaurant business is getting tighter with the change of business methods from conventional to online (digital). The problem is that the menu sold is not always comparable to the expenditure of raw materials purchased by the restaurant to make their food and beverage menus. Therefore, an appropriate marketing strategy is needed to be implemented. The restaurant used as the research material is the "Ben's Haus Bistro" restaurant. The attributes used consist of Item Name, Category Name, and Item Sold. In this study, one of the data mining methods will be applied, namely the clustering method using the K-Means algorithm to determine the marketing strategy. In addition, it will also be seen how much accuracy is obtained from the results of the clustering process that has been carried out. Based on the results of the accuracy level of the clustering process that has been carried out, a value of 0.6595 was obtained. While the results of applying the clustering method using the K-Means algorithm for overall sales data produced 4 clusters, because the results of the elbow method calculation to determine the optimal K value obtained the result K = 4. Cluster 1 obtained 6 items, Cluster 2 obtained 10 items, Cluster 3 obtained 43 items, and Cluster 4 obtained 52 items. From the results of the research that has been done, it can be concluded that the clustering method using the K-Means algorithm can be applied to food and beverage sales data to help determine marketing strategies.

Author Biography

Evasaria Magdalena Sipayung, Program Studi Informatika, Fakultas Teknologi dan Desain, Universitas Bunda Mulia

Program Studi Informatika, Fakultas Teknologi dan Desain, Universitas Bunda Mulia

References

O. Nurdiawan and N. Salim, “Penerapan Data Mining Pada Penjualan Barang Menggunakan Metode Metode Naive Bayes Classifier Untuk Optimasi Strategi Pemasaran,” J. Teknol. Inf. dan Komun., pp. 84–95, 2018.

N. Agustina and Prihandoko, “Perbandingan Algoritma K-Means dengan Fuzzy C-Means Untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 3, pp. 621–626, 2018.

Z. Nabila, A. R. Isnain, Permata, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, pp. 100–108, 2021.

L. A. W. S, “Penerapan Data Mining Pada Penjualan Tiket Pesawat Menggunakan Algoritma Apriori (Studi Kasus: PT. Sinar Jagad Indonesia),” JUISI, vol. 06, no. 01, pp. 11–22, 2020.

E. Elisa, “Market Basket Analysis Pada Mini Market Ayu Dengan Algoritma Apriori,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 2, pp. 472–478, 2018.

Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru,” J. Nas. Teknol. dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019.

D. Udariansyah and D. R. Ibrahim, “Klasifikasi Data Penerimaan Mahasiswa Baru Pada Universitas Bina Darma Menggunakan Algoritma K-Means Clustering,” J. Pendidik. dan Konseling, vol. 4, no. 4, pp. 2692–2701, 2022.

E. D. Sikumbang, “Penerapan Data Mining Penjualan Sepatu Menggunakan Metode Algoritma Apriori,” J. Tek. Komput., vol. 4, pp. 156–161, 2018.

J. T. Jabat and Murdani, “Penerapan Data Mining Pada Penjualan Produk Retail Menggunakan Metode Clustering,” J. Pelita Inform., vol. 8, no. 2, pp. 26–32, 2019.

Normah, S. Nurajizah, and A. Salbinda, “Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Fashion Hijab Banten,” J. Tek. Komput. AMIK BSI, vol. 7, no. 2, pp. 158–163, 2021.

S. Gantina, A. H. Nasyuha, and Suharsil, “Implementasi Data Mining Dalam Pengelompokan Data Transaksi Penjualan Kosmetik di WN Kosmetik Dengan Menggunakan Metode K-Means Clustering,” J. CyberTech, pp. 1–11, 2020.

S. Rizal and R. Q. Khotimah, “Penerapan Data Mining Untuk Clustering Data Penduduk Yang Terdampak Covid-19 Menggunakan Algoritma K-Means,” J. Pendidik. dan Konseling, vol. 4, pp. 2781–2792, 2022.

I. Vhallah, Sumijan, and J. Santony, “Pengelompokan Mahasiswa Potensial Drop Out Menggunakan Metode Clustering K-Means,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 2, pp. 572–577, 2018.

Feryanto, F. T. Kesuma, and S. P. Tamba, “Penerapan Data Mining Untuk Menentukan Penjualan Sparepart Toyota Dengan Metode K-Means Clustering,” J. Sist. Inf. dan Ilmu Komput. Prima (JUSIKOM PRIMA), vol. 2, no. 2, pp. 67–72, 2019.

Sagaino, T. M. S. Mulyana, I. G. N. Suryantara, J. A. Ginting, and F. Adikara, “Pemetaan Kejadian Bencana Alam Di Jawa Barat Menggunakan Algoritma K-Means,” vol. 5, pp. 471–478, 2022.

Submitted

2025-03-15

Accepted

2025-04-01

Published

2025-04-30

How to Cite

[1]
E. M. Sipayung and E. Paskasius, “Penerapan Metode Clustering Pada Penjualan Makanan Dan Minuman Dalam Menentukan Strategi Marketing”, TEKNOSI, vol. 11, no. 01, pp. 48–56, Apr. 2025.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.