PENERAPAN DATA MINING DALAM PENGELOMPOKAN PENDERITA THALASSAEMIA

Penulis

  • Heni Sulastri Universitas Siliwangi
  • Acep Irham Gufroni

DOI:

https://doi.org/10.25077/TEKNOSI.v3i2.2017.299-305

Kata Kunci:

Analysis Clustering Data Mining K-Means Thalassaemia

Abstrak

Thalassaemia is the genetic disease caused by deficiency and syinthesis of globin chains. It influences our body by decreasing eroticist and hemoglobin degree. People with Thalassaemia in 2015 at Tasikmalaya, Garut, and ciamis west java were 203 people. They organized in POPTI Tasikmalaya branch that placed in Dr. Soekardjo and Preasetya Bunda hospital. On the therapy process, they have different time needs and blood volume needs in every transfusion process. On the other hand, the difference transfusion levels also influence in giving iron chelation medicine. Furthermore, the method needed to help POPTI committee and health staff in appropriating blood volume and Iron Chelating Agent trough Thalassaemia people. Datamining method used by applying clustering method used K-means algorithm. Furthermore, this research conducted to categorized people with Thalassaemia based on blood volume need and HB in every transfusion process. Moreover, the pattern known by minor Thalassaemia, intermediate Thalassaemia, and mayor Thalassaemia based on age pattern, HB level in transfusion process, and blood volume needs. The research method in this research is begin by pre observation and data mining analysis method to analyze data on data mining using 3 steps of KDD such as data cleaning, data integration, data selection, data transformation, and data knowledge presentation. Further, the result of this research has 374 data that divided into 3 cluster. They are cluster 1 that has 214 data, cluster 2 has 137 data, and cluster 3 that has 23 data with the pattern that shows that the transfusion blood volume increase based on patient’s age.

Referensi

Gorunescu, F. (2011). Data Mining : Concepts, Models and Techniques. New York: Springer-Verlag. Han, J. Kamber, M & Jian, Pei. Data Mining : Concepts and techniques, Third Edition. America: Morgan Kauffman, San Francisco, 2011. Indriati, Ganis. (2011). Pengalaman Ibu dalam Merawat Anak Dengan Thalasemia di Jakarta. Tesis Program Magister Fakultas Keperawatan Universitas Indonesia. [Online]. Tersedia: http://lib.ui.ac.id/file?file=digital/20280932-T%20Ganis%20Indriati.pdf [3 Mei 2016] Peraturan Menteri Kesehatan Republik Indonesia. (2011) (Permenkes) No. 1109/Menkes/Per/VI/2011 Petunjuk Teknis Jaminan Pelayanan Pengobatan Thalassaemia. Jakarta: Menteri Kesehatan Republik Indonesia. Prasetyo, Eko. (2014). Data Mining - Mengolah Data Menjadi Informasi menggunakan Matlab. Yogyakarta: CV. Andi Offset. Rejeki, Dwi Sarwani Sri. dkk (2014). Model Prediksi Kebutuhan Darah untuk Penderita Talasemia Mayor. Dalam Jurnal Kesehatan Masyarakat Nasional Vol. 8, No. 7, Februari 2014. [Online]. Tersedia: http://download.portalgaruda.org/article.php?article=269759&val=7113&title=Model%20Prediksi%20Kebutuhan%20Darah%20untuk%20Penderita%20Talasemia%20Mayor. [30 Agustus 2016] Sani Susanto, D. S. (2010). Pengantar Data Mining. Yogyakarta: CV. Andi Offset. Santosa, B. (2007). Data Mining: Teknik Pemanfaatan Data untuk Keperluan Bisnis.Yogyakarta: Graha Ilmu. Santoso, S. (2010). Statistik Multivariat. Jakarta: Elex Media Komputindo. Sembiring, S.P.K. (2010). Thalasemia. Medan: MorphostLab E-Book Press. [Online]. Tersedia : http://www.morphostlab.com [22 April 2016] Tahta, Budi, dan Ali. 2013. Analisa Perbandingan Metode Hierarchical Clustering, K-means dan Gabungan Keduanya dalam Custer Data (Studi kasus: Problem Kerja Praktek Jurusan Teknik Industri ITS). Jurnal Skripsi Teknik Industri ITS. Surabaya: Teknik Industri, Institut Teknologi Sepuluh November (ITS). Witten, Ian H. dan Frank, Eibe. 2005. Data Mining Practical Machine Learning Tools and Techniques, Second Edition. Morgan Kaufmann, San Fransisco Wu, X. and Kumar, V. (2009). The Top Ten Algorithms in Data Mining. London: CRC Press Taylor & Francis Group.

Unduhan

Diterbitkan

2017-09-26

Cara Mengutip

Sulastri, H., & Gufroni, A. I. (2017). PENERAPAN DATA MINING DALAM PENGELOMPOKAN PENDERITA THALASSAEMIA. Jurnal Nasional Teknologi Dan Sistem Informasi, 3(2), 299–305. https://doi.org/10.25077/TEKNOSI.v3i2.2017.299-305

Terbitan

Bagian

Articles