Komparasi Algoritma Naïve Bayes dan Gradient Boosting untuk Prediksi Pasien Diabetes

Authors

DOI:

https://doi.org/10.25077/TEKNOSI.v10i2.2024.118-125

Keywords:

Diabetes, Gradient Boosting, Machine Learning, Naive Bayes

Abstract

Diabetes mellitus diperkirakan semakin meningkat seiring bertambahnya usia penduduk dari 19,9%, menjadi 111,2 juta orang diusia 65-79 tahun, diprediksikan bahwa penderita diabetes akan terus meningkat hingga 578 juta orang pada tahun 2030 kemudian 700 juta ditahun 2045. Machine learning atau pembelajaran mesin merupakan salah satu kecerdasan buatan yang bertujuan untuk memahami atau mengenali suatu struktur suatu data dan mengonversi data tersebut kedalam suatu model. Penggunaan Machine learning dalam dunia kesehatan semakin pesat, semakin banyak peneliti kesehatan menggunakan algoritma machine learning untuk penelitiannya. Sebagian algoritma machine learning dapat digunakan untuk melakukan prediksi, salah satunya adalah algoritma klasifikasi untuk prediksi penyakit diabetes. Berdasarkan hasil komparasi dari beberapa algoritma yang digunakan, algoritma klasifikasi naive bayes dan gradient boosting memiliki nilai yang terbaik dari algoritma lainnya. Algoritma gradient boosting memiliki hasil yang tinggi terhadap nilai accuracy 77.09% dan f-measure  83.39% pada sampel linear. Naive bayes menghasilkan nilai yang terbaik terhadap pengujian sampel acak, dengan nilai accuracy 76.57% dan nilai f-measure 82.82%. Hasil pengujian sampel berlapis (stratified) yang memiliki nilai pada akurasi tertinggi terdapat pada algoritma gradient boosting dengan nilai accuracy 77.34% dan f-measure 83.39%.

Author Biography

Nova Christina Sari, Teknologi Informasi, Universitas Muhammadiyah Semarang

Dosen Teknologi Informasi

References

[1] D. Kelurahan, G. Semarang, S. Widiyanti, and D. N. Aini, Penerapan Pemberian Ekstrak Kayu Manis Terhadap Penurunan Kadar Gula Darah Pada Penderita Diabetes Melitus. [2] N. Nina, H. Purnama, H. Z. N. Adzidzah, M. Solihat, M. Septriani, and S. Sulistiani, “Determinan Risiko dan Pencegahan terhadap Kejadian Penyakit Diabetes Melitus Tipe 2 pada Usia Produktif di Wilayah DKI Jakarta,†Journal of Public Health Education, vol. 2, no. 4, pp. 377–385, Jul. 2023, doi: 10.53801/jphe.v2i4.148. [3] Q. Aziz Gunawan, “Penyuluhan dan Cek Kadar Gula Darah Sewaktu Sebagai Upaya Deteksi Dini Diabetes Mellitus Tipe 2 di Kelurahan Sudirejo IIâ€. [4] S. Rini, O. Ayu Dhea Manto, A. Irawan, P. Studi Sarjana Keperawatan, F. Kesehatan, and U. Sari Mulia, “Journal of Nursing Invention Hubungan Pola Hidup Dengan Kadar Gula Darah Pasien Dengan Diabetes Mellitus Tipe 2.†[5] Y. Nora Marlim, L. Suryati, and N. Agustina, “Deteksi Dini Penyakit Diabetes Menggunakan Machine Learning dengan Algoritma Logistic Regression,†2022. [6] C.-Y. Chou, D.-Y. Hsu, and C.-H. Chou, “Predicting the onset of diabetes with machine learning methods,†J Pers Med, vol. 13, no. 3, p. 406, 2023. [7] K. R. Tan et al., “Evaluation of machine learning methods developed for prediction of diabetes complications: a systematic review,†J Diabetes Sci Technol, vol. 17, no. 2, pp. 474–489, 2023. [8] T. Syamsudin, T. Handhayani, ) Muhammad, and I. Syaifudin, “Jurnal Ilmu Komputer dan Sistem Informasi Perbandingan Klasifikasi Penyakit Diabetes Menggunakan Metode Machine Learning.†[Online]. Available: https://www.kaggle.com/datasets/nanditapore/healthcar [9] J. Teknika and A. Ria Supriyatna, “Teknika 17 (1): 163-172 Prediksi Penyakit Diabetes Menggunakan Algoritma Random Forest,†IJCCS, vol. x, No.x, pp. 1–5. [10] S. P. Nainggolan and A. Sinaga, “Comparative Analysis Of Accuracy Of Random Forest And Gradient Boosting Classifier Algorithm For Diabetes Classification,†Sebatik, vol. 27, no. 1, pp. 97–102, Jun. 2023, doi: 10.46984/sebatik.v27i1.2157. [11] B. N. Azmi, A. Hermawan, and D. Avianto, “Analisis Pengaruh komposisi data training dan data testing Pada penggunaan PCA Dan Algoritma decision tree untuk KLASIFIKASI Penderita Penyakit liver,†JTIM: Jurnal Teknologi Informasi Dan Multimedia, vol. 4, no. 4, pp. 281–290, 2023. [12] T. Leinonen, D. Wong, A. Wahab, R. Nadarajah, M. Kaisti, and A. Airola, “Empirical investigation of multi-source cross-validation in clinical machine learning,†Mar. 2024, [Online]. Available: http://arxiv.org/abs/2403.15012 [13] M. Muhammad, J. Samodro, M. Kunta Biddinika, A. Fadlil, A. Dahlan, and Y. J. Ringroad Selatan, “Klasifikasi Penyakit Diabetes dengan Algoritma Decision Tree dan Naïve Bayes,†vol. 6, no. 2. [14] S. Kolo, “Impact Of Data Preprocessing And Balancing On Diabetes Prediction Using The Decision Tree Technique,†International Journal of Numerical Methods and Applications, vol. 23, no. 2, pp. 157–180, Jun. 2023, doi: 10.17654/0975045223008. [15] D. Saputra, W. Irmayani, D. Purwaningtias, and J. Sidauruk, “A Comparative Analysis of C4.5 Classification Algorithm, Naïve Bayes and Support Vector Machine Based on Particle Swarm Optimization (PSO) for Heart Disease Prediction,†International Journal of Advances in Data and Information Systems, vol. 2, no. 2, Nov. 2021, doi: 10.25008/ijadis.v2i2.1221. [16] J. Teknika and A. Ria Supriyatna, “Teknika 17 (1): 163-172 Prediksi Penyakit Diabetes Menggunakan Algoritma Random Forest,†IJCCS, vol. x, No.x, pp. 1–5. [17] M. Ali, M. N. Haider, S. A. Lashari, W. Sharif, A. Khan, and D. A. Ramli, “Stacking Classifier with Random Forest functioning as a Meta Classifier for Diabetes Diseases Classification,†in Procedia Computer Science, Elsevier B.V., 2022, pp. 3453–3462. doi: 10.1016/j.procs.2022.09.404. [18] A. V. Konstantinov, L. V. Utkin, S. R. Kirpichenko, B. V. Kozlov, and A. Y. Ageev, “Random Forests with Attentive Nodes,†in Procedia Computer Science, Elsevier B.V., 2022, pp. 454–463. doi: 10.1016/j.procs.2022.11.029. [19] Gde Agung Brahmana Suryanegara, Adiwijaya, and Mahendra Dwifebri Purbolaksono, “Peningkatan Hasil Klasifikasi pada Algoritma Random Forest untuk Deteksi Pasien Penderita Diabetes Menggunakan Metode Normalisasi,†Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 114–122, Feb. 2021, doi: 10.29207/resti.v5i1.2880. [20] M. Alnaggar, M. Handosa, T. Medhat, and M. Z. Rashad, “Thyroid Disease Multi-class Classification based on Optimized Gradient Boosting Model,†Egyptian Journal of Artificial Intelligence, vol. 2, no. 1, pp. 1–14, Apr. 2023, doi: 10.21608/ejai.2023.205554.1008. [21] M. R. Ansyari, M. I. Mazdadi, F. Indriani, D. Kartini, and T. H. Saragih, “Implementation of Random Forest and Extreme Gradient Boosting in the Classification of Heart Disease using Particle Swarm Optimization Feature Selection,†Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 5, no. 4, pp. 250–260, Sep. 2023, doi: 10.35882/jeeemi.v5i4.322. [22] M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani, and R. Budiarto, “Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking,†IEEE Access, vol. 8, pp. 90847–90861, 2020, doi: 10.1109/ACCESS.2020.2994222. [23] E. Ismanto and M. Novalia, “dan Gradient Boosting untuk Klasifikasi Komoditas Performance Comparison Between C4.5 Algorithm, Random Forests, and Gradient Boosting for Commodity Classification.†[24] M. A. Naji, S. El Filali, K. Aarika, E. H. Benlahmar, R. A. Abdelouhahid, and O. Debauche, “Machine Learning Algorithms For Breast Cancer Prediction And Diagnosis,†Procedia Comput Sci, vol. 191, pp. 487–492, 2021, doi: 10.1016/j.procs.2021.07.062.

Submitted

2024-07-14

Accepted

2024-08-16

Published

2024-08-31

How to Cite

[1]
N. C. Sari and T. Linda Larasati, “Komparasi Algoritma Naïve Bayes dan Gradient Boosting untuk Prediksi Pasien Diabetes”, TEKNOSI, vol. 10, no. 2, pp. 118–125, Aug. 2024.

Similar Articles

> >> 

You may also start an advanced similarity search for this article.