Implementasi Forward Selection dan Bagging untuk Prediksi Kebakaran Hutan Menggunakan Algoritma Naïve Bayes
(1) Universitas ARS
(*) Corresponding Author
Abstrak
Kata Kunci
Teks Lengkap:
PDFReferensi
[1] F. Abid and N. Izeboudjen, “Predicting Forest Fire in Algeria Using Data Mining Techniques: Case Study of the Decision Tree Algorithm,” Adv. Intell. Syst. Comput., vol. 1105 AISC, no. February, pp. 363–370, 2020.
[2] A. Alonso-Betanzos et al., “An intelligent system for forest fire risk prediction and fire fighting management in Galicia,” Expert Syst. Appl., vol. 25, no. 4, pp. 545–554, 2003.
[3] V. Sevinc, O. Kucuk, and M. Goltas, “A Bayesian network model for prediction and analysis of possible forest fire causes,” For. Ecol. Manage., vol. 457, no. June, p. 117723, 2020.
[4] H. Lin, X. Liu, X. Wang, and Y. Liu, “A fuzzy inference and big data analysis algorithm for the prediction of forest fire based on rechargeable wireless sensor networks,” Sustain. Comput. Informatics Syst., vol. 18, pp. 101–111, 2018.
[5] R. S. Wahono, “A Systematic Literature Review of Software Defect Prediction : Research Trends , Datasets , Methods and Frameworks,” J. Softw. Eng., vol. 1, no. 1, 2015.
[6] C. Catal and B. Diri, “A systematic review of software fault prediction studies,” Expert Syst. Appl., vol. 36, no. 4, pp. 7346–7354, 2009.
[7] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. 2012.
[8] F. Fitriyani, “Metode Bagging Untuk Imbalance Class Pada Bedah Toraks Menggunakan Naive Bayes,” J. Kaji. Ilm., vol. 18, no. 3, p. 278, 2018.
[9] F. Fitriyani, “Prediksi Diabetes Menggunakan Algoritma Naive Bayes dan Greedy Forward Selection,” J. Nas. Teknol. dan Sist. Inf., vol. 7, no. 2, pp. 61–69, 2021.
[10] Y. An, S. Sun, and S. Wang, “Naive Bayes classifiers for music emotion classification based on lyrics,” Proc. - 16th IEEE/ACIS Int. Conf. Comput. Inf. Sci. ICIS 2017, no. 1, pp. 635–638, 2017.
[11] Fitriyani and R. S. Wahono, “Integrasi Bagging dan Greedy Forward Selection pada Prediksi Cacat Software dengan Menggunakan Naïve Bayes,” J. Softw. Eng., vol. 1, no. 2, pp. 101–108, 2015.
[12] R. Sanjaya and F. Fitriyani, “Prediksi Bedah Toraks Menggunakan Seleksi Fitur Forward Selection dan K-Nearest Neighbor,” J. Edukasi dan Penelit. Inform., vol. 5, no. 3, p. 316, 2019.
[13] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction using ensemble learning on selected features,” Inf. Softw. Technol., vol. 58, pp. 388–402, 2015.
[14] F. Abdi, K. Khalili-Damghani, and S. Abolmakarem, “Solving customer insurance coverage sales plan problem using a multi-stage data mining approach,” Kybernetes, vol. 47, no. 1, pp. 2–19, 2018.
[15] M. M. Saritas and A. Yasar, “Performance Analysis of ANN and Naive Bayes Classification Algorithm for Data Classification,” Int. J. Intell. Syst. Appl. Eng., vol. 7, pp. 88–91, 2019.
[16] F. Fitriyani and T. Arifin, “Implementasi Greedy Forward Selection untuk Prediksi Metode Penyakit Kutil Menggunakan Decision Tree,” JST (Jurnal Sains dan Teknol., vol. 9, no. 1, pp. 76–85, 2020.
[17] X. Y. Liu and Z. H. Zhou, “Ensemble methods for class imbalance learning,” Imbalanced Learn. Found. Algorithms, Appl., pp. 61–82, 2013.
[18] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection in machine learning: A new perspective,” Neurocomputing, vol. 300, pp. 70–79, 2018.
[19] Alpaydın Ethem, Introduction to Machine Learning Second Edition, 2nd ed. London: MIT, 2010.
[20] D. T. Larose, Data Mining Methods and Models. 2006.
[21] D. Sumeet and D. Xian, Data Mining and Machine Learning in Cybersecurity. 2011.
[22] M. Bramer, Principles of Data Mining, no. February. 2007.
Artikel Statistik
PDF telah dilihat : 713 kali
Refbacks
- Saat ini tidak ada refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Alamat Redaksi : Departemen Sistem Informasi, Fakultas Teknologi Informasi Universitas Andalas Kampus Limau Manis, Padang 25163, Sumatera Barat email: teknosi@fti.unand.ac.id |
Jumlah Pengunjung :
This work by JSI-Unand and licensed under a CC BY-SA 4.0 International License.