Prediksi Diabetes Menggunakan Algoritma Naive Bayes dan Greedy Forward Selection
(1) Universitas ARS
(*) Corresponding Author
Abstrak
Kata Kunci
Teks Lengkap:
PDFReferensi
[1] M. M. F. Islam, R. Ferdousi, S. Rahman, and H. Y. Bushra, Likelihood Prediction of Diabetes at Early Stage Using Data Mining Techniques, vol. 992. 2020.
[2] Noviandi, “Implementasi Algoritma Decision Tree C4.5 Untuk Prediksi Penyakit Diabetes,” Inohim, vol. 6, no. 1, pp. 1–5, 2018.
[3] D. Sisodia and D. S. Sisodia, “Prediction of Diabetes using Classification Algorithms,” Procedia Comput. Sci., vol. 132, no. Iccids, pp. 1578–1585, 2018.
[4] R. A. Siallagan and Fitriyani, “Prediksi Penyakit Diabetes Mellitus Menggunakan Algoritma C4.5,” vol. 3, no. 1, pp. 45–46, 2021.
[5] R. S. Wahono, “A Systematic Literature Review of Software Defect Prediction : Research Trends , Datasets , Methods and Frameworks,” J. Softw. Eng., vol. 1, no. 1, 2015.
[6] C. Catal and B. Diri, “A systematic review of software fault prediction studies,” Expert Syst. Appl., vol. 36, no. 4, pp. 7346–7354, 2009.
[7] M. M. Saritas and A. Yasar, “Performance Analysis of ANN and Naive Bayes Classification Algorithm for Data Classification,” Int. J. Intell. Syst. Appl. Eng., vol. 7, pp. 88–91, 2019.
[8] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. 2012.
[9] F. Fitriyani, “Metode Bagging Untuk Imbalance Class Pada Bedah Toraks Menggunakan Naive Bayes,” J. Kaji. Ilm., vol. 18, no. 3, p. 278, 2018.
[10] F. Fitriyani and T. Arifin, “Implementasi Greedy Forward Selection untuk Prediksi Metode Penyakit Kutil Menggunakan Decision Tree,” JST (Jurnal Sains dan Teknol., vol. 9, no. 1, pp. 76–85, 2020.
[11] S. D. Jadhav and H. P. Channe, “Comparative Study of K-NN, Naive Bayes and Decision Tree Classification Techniques,” Int. J. Sci. Res., vol. 5, no. 1, pp. 1842–1845, 2016.
[12] D. Vigneswari, N. K. Kumar, V. Ganesh Raj, A. Gugan, and S. R. Vikash, “Machine Learning Tree Classifiers in Predicting Diabetes Mellitus,” 2019 5th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2019, pp. 84–87, 2019.
[13] P. Sonar and K. Jaya Malini, “Diabetes prediction using different machine learning approaches,” Proc. 3rd Int. Conf. Comput. Methodol. Commun. ICCMC 2019, no. Iccmc, pp. 367–371, 2019.
[14] V. Sindhu, S. A. S. Prabha, S. Veni, and M. Hemalatha, “Thoracic surgery analysis using data mining techniques,” vol. 5, no. April, pp. 578–586, 2014.
[15] R. Sanjaya and F. Fitriyani, “Prediksi Bedah Toraks Menggunakan Seleksi Fitur Forward Selection dan K-Nearest Neighbor,” J. Edukasi dan Penelit. Inform., vol. 5, no. 3, p. 316, 2019.
[16] F. Fitriyani and R. S. Wahono, “Integrasi Bagging dan Greedy Forward Selection pada Prediksi Cacat Software dengan Menggunakan Naïve Bayes,” J. Softw. Eng., vol. 1, no. 2, pp. 101–108, 2015.
[17] Alpaydın Ethem, Introduction to Machine Learning Second Edition, 2nd ed. London: MIT, 2010.
[18] R. S. Wahono, N. S. Herman, and S. Ahmad, “Neural Network Parameter Optimization Based on Genetic Algorithm for Software Defect Prediction,” vol. 20, no. 10, pp. 1951–1955, 2014.
Artikel Statistik
PDF telah dilihat : 1562 kali
Refbacks
- Saat ini tidak ada refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Alamat Redaksi : Departemen Sistem Informasi, Fakultas Teknologi Informasi Universitas Andalas Kampus Limau Manis, Padang 25163, Sumatera Barat email: teknosi@fti.unand.ac.id |
Jumlah Pengunjung :
This work by JSI-Unand and licensed under a CC BY-SA 4.0 International License.