Ekstraksi Basis Pengetahuan Ke Dalam Basisdata Graf Menggunakan Graf Property

Penulis

  • Wahyudi Wahyudi Jurusan Sistem Informasi, Fakultas Teknologi Informasi, Universitas Andalas
  • Fajril Akbar Jurusan Sistem Informasi, Fakultas Teknologi Informasi, Universitas Andalas

DOI:

https://doi.org/10.25077/TEKNOSI.v5i1.2019.41-48

Kata Kunci:

Basis pengetahuan, Graf, property, Yago, Neo4j

Abstrak

Salah satu jenis commonsense knowledge adalah basis pengetahuan, yaitu kumpulan fakta dan informasi umum yang diketahui manusia. Basis pengetahuan yang tersedia sangat banyak, kami memilih Yago karena Yago menggabungkan beberapa sumber data menjadi sebuah ontologi. Fakta fakta ini saling terhubung sehingga representasi data graf adalah representasi data yang paling tepat untuk ini. Kita perlu melakukan ekstraksi basis pengetahuan kedalam basisdata graf supaya bisa digunakan untuk berbagai macam aplikasi lainnya. Tools basisdata graf Neo4j dipilih karena bisa melakukan penyimpanan dan pemrosesan graf dan bersifat opensource. Algoritma GPE digunakan untuk melakukan ekstraksi basis pengetahuan kedalam basisdata graf. Penelitian yang kami lakukan menghasilkan sebuah basisdata graf dengan jumlah node : 6.519.734 dan edge yang dihasilkan 18.724.395. Pengujian menggunakan query dengan berbagai permasalahan graf berhasil dilakukan dan memberikan hasil yang diharapkan

Referensi

[1] I. Robinson, J. Webber, and E. Eifrem, Graph Databases, Second edi. O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472., 2015. [2] Z. C. Khan et al., “An Analysis of Facebook’s Graph Search,†2014. [3] X. L. Dong et al., “Knowledge Vault : A Web-Scale Approach to Probabilistic Knowledge Fusion,†Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’14, pp. 601–610, 2014. [4] A. Welc et al., “Graph analysis: do we have to reinvent the wheel?,†First International Workshop on Graph Data Management Experiences and Systems, p. 7:1--7:6, 2013. [5] A. Kanavos, G. Drakopoulos, and A. Tsakalidis, “Graph Community Discovery Algorithms in Neo4j with a Regularization-based Evaluation Metric,†WEBIST 2017 - Proceedings of the 13th International Conference on Web Information Systems and Technologies, 2017. [6] S. Abiteboul, R. Hull, V. Vianu, and F. Databases, Foundations of databases, vol. 29, no. 11. United States of America: Addison-Wesley Publishing Company, 1995. [7] W. Fan and J.-P. Huai, “Querying Big Data: Bridging Theory and Practice,†Journal of Computer Science and Technology, vol. 29, no. 5, pp. 849–869, 2014. [8] S. Ramanujam, A. Gupta, L. Khan, S. Seida, and B. Thuraisingham, “R2D: Extracting Relational Structure from RDF Stores,†in 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, 2009, pp. 361–366. [9] R. Angles, “A Comparison of Current Graph Database Models,†in 2012 IEEE 28th International Conference on Data Engineering Workshops, 2012, pp. 171–177. [10] F. M. Suchanek, G. Kasneci, and G. Weikum, “YAGO: A Large Ontology from Wikipedia and WordNet,†Web Semantics, vol. 6, no. 3, pp. 203–217, 2008. [11] F. M. Suchanek, G. Kasneci, and G. Weikum, “YAGO: A Core of Semantic Knowledge Unifying WordNet and Wikipedia,†in Proceedings of the 16th international conference on World Wide Web - WWW ’07, 2007, p. 697. [12] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, and Z. Ives, “DBpedia : A Nucleus for a Web of Open Data,†in ISWC’07/ASWC’07 Proceedings of the 6th international The semantic web and 2nd Asian conference on Asian semantic web conference, 2007, pp. 722–735. [13] Z. Pan and J. Heflin, “DLDB: Extending Relational Databases to Support Semantic Web Queries,†in Practical and Scalable Semantic Systems, 2003. [14] Vojtech Kolomicenko, M. Svoboda, and I. Holubová, “Experimental Comparison of Graph Databases,†2013. [15] S. Jouili and V. Vansteenberghe, “An empirical comparison of graph databases,†pp. 708–715, 2013. [16] Wahyudi, M. L. Khodra, A. S. Prihatmanto, and C. Machbub, “Knowledge-based graph compression using graph property on Yago,†in 2017 3rd International Conference on Science in Information Technology (ICSITech), 2017, pp. 127–131. [17] F. Mahdisoltani, J. Biega, and F. Suchanek, “YAGO3: A Knowledge Base from Multilingual Wikipedias,†in 7th Biennial Conference on Innovative Data Systems Research (CIDR 2015), 2015, pp. 177–185.

Unduhan

Diterbitkan

2019-04-30

Cara Mengutip

Wahyudi, W., & Akbar, F. (2019). Ekstraksi Basis Pengetahuan Ke Dalam Basisdata Graf Menggunakan Graf Property. Jurnal Nasional Teknologi Dan Sistem Informasi, 5(1), 41–48. https://doi.org/10.25077/TEKNOSI.v5i1.2019.41-48

Terbitan

Bagian

Articles