Perbandingan Algoritma Support Vector Machine (SVM) dan Decision Tree untuk Sistem Rekomendasi Tempat Wisata
DOI:
https://doi.org/10.25077/TEKNOSI.v9i2.2023.113-121Keywords:
Decision Tree, Principal Component Analysis, Support Vector Machine, Sistem Rekomendasi WisataAbstract
Industri pariwisata Indonesia berkembang dari tahun ke tahun. Daerah Istimewa Yogyakarta merupakan salah satu provinsi yang memiliki banyak destinasi wisata. Pertumbuhan internet dan teknologi informasi juga menjadi faktor dalam industri pariwisata Indonesia. Dengan adanya informasi mengenai pariwisata di internet, dapat memudahkan wisatawan untuk mencari informasi. Namun, karena jumlah informasi yang sangat banyak akan membuat wisatawan kebingungan untuk menentukan tujuan wisata. Selain itu, wisata lokal memiliki potensi yang cukup tinggi untuk membantu perekonomian daerah, namun saat ini belum dieksplorasi secara maksimal. Sistem rekomendasi dan kemampuan klasifikasi tempat wisata diperlukan untuk memberikan akurasi rekomendasi yang baik. Untuk menentukan jumlah fitur yang paling menguntungkan untuk klasifikasi lokasi wisata, Teknik Principal Component Analysis (PCA) digunakan dalam penelitian ini untuk membandingkan metodologi Support Vector Machine (SVM) dan Decision Tree (DT). Hasilnya menunjukkan bahwa, dengan nilai akurasi 98.97% penerapan PCA dengan nilai n=5 dan berada pada perbandingan Split Data 75% : 25%, pendekatan SVM memiliki performa lebih baik daripada metode Decision Tree. Metode Decision Tree juga memiliki performa yang baik, dengan menggunakan PCA dengan nilai n=5, Decision Tree memiliki akurasi 96.55% yang berada pada perbandingan Split Data 85% : 15%.References
[1] Badan Pusat Statistik, “Jumlah Kunjungan Wisman ke Indonesia Oktober 2022,†Badan Pusat Statistik , Dec. 01, 2022. https://www.bps.go.id/pressrelease/2022/12/01/1879/jumlah-kunjungan-wisman-ke-indonesia-pada-oktober-2022-mencapai-678-53-ribu-kunjungan-dan-jumlah-penumpang-angkutan-udara-domestik-pada-oktober-2022-naik-10-08-persen.html#:~:text=Selama%20Januari–Oktober%202022%2C%20jumlah,periode%20yang%20sama%20tahun%202021. (accessed Jan. 30, 2023). [2] Bappeda DI Yogyakarta, “Jumlah Wisatawan,†Dataku Bappeda DI Yogyakarta, Dec. 01, 2022. http://bappeda.jogjaprov.go.id/dataku/data_dasar/index/214-jenis-objek-wisata?id_skpd=23 (accessed Jan. 30, 2023). [3] R. A. Hamid et al., “How smart is e-tourism? A systematic review of smart tourism recommendation system applying data management,†Comput Sci Rev, vol. 39, no. 1, p. 100337, Feb. 2021, doi: 10.1016/j.cosrev.2020.100337. [4] I. P. G. H. Saputra and L. A. A. R. Putri, “Sistem Rekomendasi Perjalanan Wisawa Berbasis Expert System dan Algoritma Genetika,†Jurnal Resistor, vol. 5, no. 1, pp. 47–54, Apr. 2022, doi: 10.31598/jurnalresistor.v5i1.761. [5] S. Sauda and M. R. Ramadhan, “Implementasi Memory-Based dan Model-Based Collaborative Filtering pada Sistem Rekomendasi Sepeda Gunung,†Syantax Literate: Jurnal Ilmiah Indonesia, vol. 7, no. 6, pp. 7836–7848, Jun. 2022, doi: 10.36418/syntax-literate.v7i6.7559. [6] Murniyati, T. Yusnitasari, E. Kurniasari, and D. Pernadi, “Clustering Relationship Berdasarkan Bobot Pembentuk Social Trust Network Untuk Sistem Rekomendasi Pada Media Sosial Instagram,†Jurnal Ilmiah Informatika Komputer, vol. 27, no. 3, pp. 216–228, Dec. 2022, doi: 10.35760/ik.2022.v27i3.7557. [7] D. A. Pratiwi and A. Qoiriah, “Sistem Rekomendasi Wedding Organizer Menggunakan Metode Content-Based Filtering Dengan Algoritma Random Forest Regression,†Journal of Informatics and Computer Science (JINACS), vol. 3, no. 03, pp. 231–239, Dec. 2021, doi: 10.26740/jinacs.v3n03.p231-239. [8] O. Somantri, W. E. Nugroho, and A. R. Supriyono, “Penerapan Feature Selection Pada Algoritma Decision Tree Untuk Menentukan Pola Rekomendasi Dini Konseling,†Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 2, pp. 272–279, Dec. 2022, doi: 10.30865/json.v4i2.5267. [9] Erfin Nur Rohma, “Comparison of the Social Welfare Data Classification Algorithm for Bantul Regency,†Jurnal PROCESSOR, vol. 17, no. 2, pp. 91–100, Oct. 2022, doi: 10.33998/processor.2022.17.2.1222. [10] Y. Anggraiwan and B. Siregar, “Klasifikasi Harga Mobil Menggunakan Metode Decision Tree Algoritma C4.5,†Computatio: Journal of Computer Science and Information Systems, vol. 6, no. 2, pp. 70–79, Dec. 2022, doi: 10.24912/computatio.v6i2.19994. [11] J. Ma’sum, A. Febriani, and D. Rachmawaty, “Penerapan Metode Klasifikasi Decision Tree Untuk Memprediksi Kelulusan Tepat Waktu,†Journal of Industrial Engineering and Technology, vol. 2, no. 1, pp. 61–74, Jan. 2022, doi: 10.24176/jointtech.v2i1.7432. [12] H. Paul, A. S. Wiguna, and H. Santoso, “Penerapan Algoritma Support Vector Machine Dan Naive Bayes Untuk Klasifikasi Jenis Mobil Terlaris Berdasarkan Produksi Di Indonesia,†JATI: Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 1, pp. 39–44, Jan. 2023, doi: 10.36040/jati.v7i1.5555. [13] A. Achmad, A. Adnan, and M. Rijal, “Klasifikasi Penyakit Pernapasan berbasis Visualisasi Suara menggunakan Metode Support Vector Machine,†Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan), vol. 6, no. 1, pp. 78–83, Oct. 2022, doi: 10.47970/siskom-kb.v6i1.330. [14] N. L. W. S. R. Ginantra, C. P. Yanti, G. D. Prasetya, I. B. G. Sarasvananda, and I. K. A. G. Wiguna, “Analisis Sentimen Ulasan Villa di Ubud Menggunakan Metode Naive Bayes, Decision Tree, dan K-NN,†Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 11, no. 3, pp. 205–215, Dec. 2022, doi: 10.23887/janapati.v11i3.49450. [15] H. Mukhtar, R. Gunawan, A. Hariyanto, Syahril, and Wide Mulyana, “Peramalan Kedatangan Wisatawan ke Suatu Negara Menggunakan Metode Support Vector Machine (SVM),†Jurnal CoSciTech (Computer Science and Information Technology), vol. 3, no. 3, pp. 274–282, Dec. 2022, doi: 10.37859/coscitech.v3i3.4211. [16] Y. A. Singgalen, “Analisis Performa Algoritma NBC, DT, SVM dalam Klasifikasi Data Ulasan Pengunjung Candi Borobudur Berbasis CRISP-DM,†Building of Informatics, Technology and Science (BITS), vol. 4, no. 3, pp. 1634–1646, Dec. 2022. [17] A. Munir, E. P. Atika, and A. D. Indraswari, “Analisis Sentimen pada review hotel menggunakan metode pembobotan dan klasifikasi,†JNANALOKA, vol. 3, no. 1, pp. 33–38, Mar. 2022, doi: 10.36802/jnanaloka.2022.v3-no1-33-38. [18] Ardi Ramdani, Christian Dwi Sofyan, Fauzi Ramdani, Muhamad Fauzi Arya Tama, and Muhammad Angga Rachmatsyah, “Algoritma Klasifikasi Data Mining Untuk Memprediksi Masyarakat Dalam Menerima Bantuan Sosial,†Jurnal Ilmiah Sistem Informasi, vol. 1, no. 2, pp. 39–47, Jul. 2022, doi: 10.51903/juisi.v1i2.363. [19] M. Rafif, “Yogyakarta Tourism Place,†Kaggle, Apr. 20, 2021. https://www.kaggle.com/datasets/mrafif/yogyakarta-tourism-place (accessed Jan. 05, 2023). [20] M. Choirunnisa, N. Hidayat, and E. Susanto, “Implementasi Metode Support Vector Machine Dengan Query Expansion Pada Klasifikasi Review Di Situs Traveloka,†Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 5, pp. 1860–1865, May 2021, Accessed: Jan. 31, 2023. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/9036 [21] S. Widaningsih, “Penerapan Data Mining untuk Memprediksi Siswa Berprestasi dengan Menggunakan Algoritma K Nearest Neighbor,†JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 3, pp. 2598–2611, Sep. 2022, doi: 10.35957/jatisi.v9i3.859. [22] B. N. Azmi, A. Hermawan, and D. Avianto, “Analisis Pengaruh PCA Pada Klasifikasi Kualitas Air Menggunakan Algoritma K-Nearest Neighbor dan Logistic Regression,†JUSTINDO: Jurnal Sistem dan Teknologi Informasi, vol. 7, no. 2, pp. 94–103, Aug. 2022, doi: 10.32528/justindo.v7i2.8190. [23] A. Dinanti and J. Purwadi, “Analisis Performa Algoritma K-Nearest Neighbor dan Reduksi Dimensi Menggunakan Principal Component Analysis,†Jambura Journal of Mathematics, vol. 5, no. 1, pp. 155–165, Feb. 2023, doi: 10.34312/jjom.v5i1.17098. [24] M. F. Azhari and F. A. Fitriani, “Coronary Heart Disease Risk Prediction Using Binary Logistic Regression Based on Principal Component Analysis,†Enthusiastic : International Journal of Applied Statistics and Data Science, vol. 2, no. 1, pp. 47–55, May 2022, doi: 10.20885/enthusiastic.vol2.iss1.art6. [25] J. Kusuma, A. Jinan, M. Z. Lubis, R. Rubianto, and R. Rosnelly, “Komparasi Algoritma Support Vector Machine Dan Naive Bayes Pada Klasifikasi Ras Kucing,†Generic: Jurnal Ilmu Komputer dan Teknologi Informasi, vol. 14, no. 1, pp. 8–12, Jan. 2022, Accessed: Jan. 31, 2023. [Online]. Available: http://generic.ilkom.unsri.ac.id/index.php/generic/article/view/122 [26] D. E. Safitri and A. S. Fitrani, “Implementasi Metode Klasifikasi Dengan Algoritma Support Vector Machine Kernel Gaussian Rbf Untuk Prediksi Partisipasi Pemilu Terhadap Demografi Kota Surabaya,†Indonesian Journal of Business Intelligence (IJUBI), vol. 5, no. 1, p. 36, Jun. 2022, doi: 10.21927/ijubi.v5i1.2259. [27] I. Arfyanti, M. Fahmi, and P. Adytia, “Penerapan Algoritma Decision Tree Untuk Penentuan Pola Penerima Beasiswa KIP Kuliah,†Building of Informatics, Technology and Science (BITS), vol. 4, no. 3, pp. 1196–1201, Dec. 2022, doi: 10.47065/bits.v4i3.2275. [28] M. Wibowo and R. Ramadhani, “Perbandingan Metode Klasifikasi Data Mining Untuk Rekomendasi Tanaman Pangan,†Jurnal Media Informatika Budidarma, vol. 5, no. 3, pp. 913–921, Jul. 2021, doi: 10.30865/mib.v5i3.3086. [29] K. A. Rokhman, B. Berlilana, and P. Arsi, “Perbandingan Metode Support Vector Machine Dan Decision Tree Untuk Analisis Sentimen Review Komentar Pada Aplikasi Transportasi Online,†Journal of Information System Management (JOISM), vol. 3, no. 1, pp. 1–7, Jan. 2021, doi: 10.24076/JOISM.2021v3i1.341. [30] M. Mayasari, D. I. Mulyana, and M. B. Yel, “Komparasi Klasifikasi Jenis Tanaman Rimpang Menggunakan Principal Component Analiysis, Support Vector Machine, K-Nearest Neighbor Dan Decision Tree,†Jurnal Teknik Informatika Kaputama(JTIK), vol. 6, no. 2, pp. 644–655, Jul. 2022, Accessed: Jul. 24, 2023. [Online]. Available: https://jurnal-backup.kaputama.ac.id/index.php/JTIK/article/view/878
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Hak cipta untuk artikel ini ditransfer ke Jurnal Nasional Teknologi dan Sistem Informasi (TEKNOSI) jika dan ketika artikel diterima untuk publikasi. Yang bertanda tangan di bawah ini dengan ini mentransfer setiap dan semua hak di dalam dan ke kertas termasuk tanpa batasan semua hak cipta untuk TEKNOSI. Yang bertanda tangan di bawah ini dengan ini menyatakan dan menjamin bahwa makalah tersebut asli dan bahwa ia adalah pembuat makalah, kecuali untuk bahan yang secara jelas diidentifikasi sebagai sumber aslinya, dengan pemberitahuan izin dari pemilik hak cipta jika diperlukan. Yang bertanda tangan di bawah ini menyatakan bahwa ia memiliki kekuatan dan wewenang untuk membuat dan melaksanakan penugasan ini.
Kami menyatakan bahwa:
- Makalah ini belum diterbitkan dalam bentuk yang sama di tempat lain.
- Makalah ini tidak akan dikirimkan di tempat lain untuk publikasi sebelum penerimaan/penolakan oleh Jurnal ini
- Izin hak cipta diperoleh untuk materi yang diterbitkan di tempat lain dan yang memerlukan izin ini untuk reproduksi.
Selanjutnya, Saya/kami dengan ini mentransfer hak publikasi yang tidak terbatas dari makalah yang disebutkan di atas secara keseluruhan kepada TEKNOSI. Transfer hak cipta mencakup hak untuk mereproduksi dan mendistribusikan artikel, termasuk cetak ulang, terjemahan, reproduksi foto, mikroform, bentuk elektronik (offline, online) atau reproduksi lain yang serupa.
Penulis yang sesuai menandatangani dan menerima tanggung jawab untuk merilis materi ini atas nama setiap dan semua penulis bersama. Perjanjian ini harus ditandatangani oleh setidaknya salah satu penulis yang telah memperoleh persetujuan dari rekan penulis jika berlaku. Setelah pengajuan perjanjian ini ditandatangani oleh penulis yang sesuai, perubahan kepengarangan atau dalam urutan penulis yang tercantum tidak akan diterima.
Hak / Syarat dan Ketentuan yang dipertahankan :
- Penulis memiliki semua hak kepemilikan dalam setiap proses, prosedur, atau artikel manufaktur yang dijelaskan dalam Karya ini.
- Penulis dapat mereproduksi atau mengotorisasi orang lain untuk mereproduksi karya ini atau karya turunannya untuk penggunaan pribadi penulis atau untuk penggunaan perusahaan, dengan ketentuan bahwa sumber dan menyatakan hak cipta dimiliki TEKNOSI, salinan tidak digunakan dengan cara apa pun yang menyiratkan pengesahan TEKNOSI atas suatu produk atau layanan dari pihak mana pun, dan salinannya sendiri tidak ditawarkan untuk dijual.
- Meskipun penulis diizinkan untuk menggunakan kembali semua atau sebagian dari karya ini dalam karya lain, ini tidak termasuk mengabulkan permintaan pihak ketiga untuk mencetak ulang, menerbitkan ulang, atau jenis penggunaan ulang lainnya.