Analisis Bibliometrik Terhadap Tren dan Pertumbuhan Penelitian Quantum Machine Learning

Penulis

  • Raka Yudistira Program Studi Sistem Telekomunikasi,Universitas Pendidikan Indonesia
  • Endah Setyowati Program Studi Sistem Telekomunikasi,Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.25077/TEKNOSI.v11i3.2025.361-368

Kata Kunci:

Quantum, Machine learning, bibliometrik

Abstrak

Penelitian ini bertujuan untuk menganalisis tren serta perkembangan penelitian dalam bidang Quantum Machine Learning (QML) melalui pendekatan bibliometrik. QML merupakan turunan bidang ilmu dari Machine Learning (ML) yang mengintegrasikan ebberapa prinsip dasar mekanika kuantum seperti superposisi dan entanglement yang memungkinkan komputasi yang lebih kompleks. Dibalik potensinya yang besar, jumlha publikasi ilmiah pada bidang ini masih relative terbatas dibandingkan dengan topik lain yang sering digunakan seperti Artificial Intelligence (AI). Maka dari itu, analisis serta pemetaan yang sistematis melalui pendekatan bibliometrik sangat diperlukan untuk membantu para peneliti untuk mengembangkan penelitian pada topik QML ini. data dikumpulkan dengan menggunakan software publish or perish dengan menggunakan database scopus pada periode 2013-2023 atau rentang 10 tahun terakhir. Didapatkan 200 dokumen yang berupa artikel ilmiah dan konfrensi. Analisis dilakukan terhadap berbagai parameter seperti tren jumlah publikasi dari tahun ke tahun, produktivitas penulis dalam mengembangkan penelitian pada bidang ini, jurnal dengan frekuensi publikasi tertinggi, serta keterikatan kata kunci pada QML. Data yang dianalisis serta divisualisasikan menggunakan Microsoft Excell dan VOSviewer. Hasil penelitian menunjukan hasil yang membantu para peneliti seperti peningkatan publikasi pada rentang tahun 2017-2020, penulis paling produktif pada topik QML adalah M.schuld 6 jurnal ilmiah yang sudah dipublikasikan. Keterikatan kata kunci yang sangat erat dengan QML yakni quantum computing dan deep learning. Serta frekuensi tempat publikasi jurnal ilmiah terbanyak pada topik ini pada Nature Communications. Temuan ini diharapkan dapat menajdi rujuan serta acuan bagi para peneliti untuk yang akan meneliti pada bidang QML

Referensi

R. S. Gupta, C. E. Wood, T. Engstrom, J. D. Pole, and S. Shrapnel, “A systematic review of Quantum Machine Learningfor digital health,” NPJ Digit Med, vol. 8, no. 1, Dec. 2025, doi: 10.1038/s41746-025-01597-z.

M. Doosti, P. Wallden, C. B. Hamill, R. Hankache, O. T. Brown, and C. Heunen, “A Brief Review of Quantum Machine Learningfor Financial Services,” Jul. 2024, [Online]. Available: http://arxiv.org/abs/2407.12618

M. Schuld and N. Killoran, “Is Quantum Advantage the Right Goal for Quantum Machine Learning?,” Jul. 01, 2022, American Physical Society. doi: 10.1103/PRXQuantum.3.030101.

A. A. Ahmadi Kia, A. Shirzad, and A. M. Saghiri, “A Bibliometrik Analysis of Quantum Machine LearningResearch.”

T. Ichikawa, “Bibliometrik analysis of topic structure in quantum computation and quantum algorithm research,” Jan. 2022, [Online]. Available: http://arxiv.org/abs/2201.01911

D. P. García, J. Cruz-Benito, and F. J. García-Peñalvo, “Systematic Literature Review: Quantum Machine Learningand its applications,” Dec. 2023, [Online]. Available: http://arxiv.org/abs/2201.04093

R. Bansal and N. K. Rajput, “Quantum Machine Learning: Unveiling Trends, Impacts through Bibliometrik Analysis,” Apr. 2025, [Online]. Available: http://arxiv.org/abs/2504.07726

M. Ramezani, S. A. Zargar, A. Bahrampour, S. B. Shouraki, and A. Bahrampour, “Parallel Data Processing in Quantum Machine Learning,” Aug. 2025, [Online]. Available: http://arxiv.org/abs/2508.12006

A. Bayerstadler et al., “Industry quantum computing applications,” EPJ Quantum Technol, vol. 8, no. 1, Dec. 2021, doi: 10.1140/epjqt/s40507-021-00114-x.

H. Y. Huang et al., “Power of data in quantum Machine Learning,” Nat Commun, vol. 12, no. 1, Dec. 2021, doi: 10.1038/s41467-021-22539-9.

T. N. Pandey, V. Ravalekar, S. D. Nair, and S. K. Pradhan, “A comparative analysis of classical Machine Learning models with quantum-inspired models for predicting world surface temperature,” Sci Rep, vol. 15, no. 1, Aug. 2025, doi: 10.1038/s41598-025-12515-4.

N. Schetakis et al., “Quantum neural networks with data re-uploading for urban traffic time series forecasting,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-04546-8.

S. Wu, Y. Zhang, and J. Li, “Quantum data parallelism in quantum neural networks,” Phys Rev Res, vol. 7, no. 1, Jan. 2025, doi: 10.1103/PhysRevResearch.7.013177.

S. H. Sack and D. J. Egger, “Large-scale quantum approximate optimization on nonplanar graphs with Machine Learning noise mitigation,” Phys Rev Res, vol. 6, no. 1, Jan. 2024, doi: 10.1103/PhysRevResearch.6.013223.

X. Wang, Y. Du, Z. Tu, Y. Luo, X. Yuan, and D. Tao, “Transition role of entangled data in quantum Machine Learning,” Nat Commun, vol. 15, no. 1, Dec. 2024, doi: 10.1038/s41467-024-47983-1.

M. Ramezani, S. A. Zargar, A. Bahrampour, S. B. Shouraki, and A. Bahrampour, “Parallel Data Processing in Quantum Machine Learning,” Aug. 2025, [Online]. Available: http://arxiv.org/abs/2508.12006

T. Haug, C. N. Self, and M. S. Kim, “Quantum Machine Learningof large datasets using randomized measurements,” Dec. 2022, doi: 10.1088/2632-2153/acb0b4.

D. Ranga, A. Rana, S. Prajapat, P. Kumar, K. Kumar, and A. V. Vasilakos, “Quantum Machine Learning: Exploring the Role of Data Encoding Techniques, Challenges, and Future Directions,” Nov. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/math12213318.

X. B. Nguyen, H. Q. Nguyen, H. Churchill, S. U. Khan, and K. Luu, “Quantum visual feature encoding revisited,” Quantum Mach Intell, vol. 6, no. 2, Dec. 2024, doi: 10.1007/s42484-024-00192-x.

D. Ranga, A. Rana, S. Prajapat, P. Kumar, K. Kumar, and A. V. Vasilakos, “Quantum Machine Learning: Exploring the Role of Data Encoding Techniques, Challenges, and Future Directions,” Nov. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/math12213318.

R. M. Devadas and S. T, “Quantum Machine Learning: A comprehensive review of integrating AI with quantum computing for computational advancements,” Jun. 01, 2025, Elsevier B.V. doi: 10.1016/j.mex.2025.103318.

M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J. Coles, “Challenges and Opportunities in Quantum Machine Learning,” Mar. 2023, doi: 10.1038/s43588-022-00311-3.

K. Zaman, A. Marchisio, M. A. Hanif, and M. Shafique, “A Survey on Quantum Machine Learning: Current Trends, Challenges, Opportunities, and the Road Ahead,” Jun. 2025, [Online]. Available: http://arxiv.org/abs/2310.10315

M. Schuld and N. Killoran, “Quantum Machine Learningin feature Hilbert spaces,” Mar. 2018, doi: 10.1103/PhysRevLett.122.040504.

M. Schuld, R. Sweke, and J. J. Meyer, “The effect of data encoding on the expressive power of variational Quantum Machine Learningmodels,” Mar. 2021, doi: 10.1103/PhysRevA.103.032430.

M. Schuld, A. Bocharov, K. Svore, and N. Wiebe, “Circuit-centric quantum classifiers,” Apr. 2018, doi: 10.1103/PhysRevA.101.032308.

M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, “Evaluating analytic gradients on quantum hardware,” Nov. 2018, doi: 10.1103/PhysRevA.99.032331.

M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum Machine Learning,” Sep. 2014, doi: 10.1080/00107514.2014.964942.

M. Schuld, I. Sinayskiy, and F. Petruccione, “Prediction by linear regression on a quantum computer,” Aug. 2016, doi: 10.1103/PhysRevA.94.022342.

J. Behler, “Hochdimensionale neuronale Netze für Potentialhyperflächen großer molekularer und kondensierter Systeme,” Angewandte Chemie, vol. 129, no. 42, pp. 13006–13020, Oct. 2017, doi: 10.1002/ange.201703114.

K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko, “Quantum-Chemical Insights from Deep Tensor Neural Networks,” Nov. 2016, doi: 10.1038/ncomms13890.

K. T. Schütt, M. Gastegger, A. Tkatchenko, K.-R. Müller, and R. J. Maurer, “Unifying Machine Learning and quantum chemistry -- a deep neural network for molecular wavefunctions,” Jun. 2019, [Online]. Available: http://arxiv.org/abs/1906.10033

K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller, “SchNet - a deep learning architecture for molecules and materials,” Mar. 2018, doi: 10.1063/1.5019779.

G. Pilania, J. E. Gubernatis, and T. Lookman, “Multi-fidelity Machine Learning models for accurate bandgap predictions of solids,” Comput Mater Sci, vol. 129, pp. 156–163, Mar. 2017, doi: 10.1016/j.commatsci.2016.12.004.

J. Behler, “Perspective: Machine Learning potentials for atomistic simulations,” Journal of Chemical Physics, vol. 145, no. 17, Nov. 2016, doi: 10.1063/1.4966192.

J. Behler, “Constructing high-dimensional neural network potentials: A tutorial review,” in International Journal of Quantum Chemistry, John Wiley and Sons Inc, Aug. 2015, pp. 1032–1050. doi: 10.1002/qua.24890.

Y. Zhang et al., “DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models,” Oct. 2019, doi: 10.1016/j.cpc.2020.107206.

Y. Zhang, C. Hu, and B. Jiang, “Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation.”

G. Pilania, A. Mannodi-Kanakkithodi, B. P. Uberuaga, R. Ramprasad, J. E. Gubernatis, and T. Lookman, “Machine Learning bandgaps of double perovskites,” Sci Rep, vol. 6, Jan. 2016, doi: 10.1038/srep19375.

G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and R. Ramprasad, “Accelerating materials property predictions using Machine Learning,” Sci Rep, vol. 3, 2013, doi: 10.1038/srep02810.

Y. Zhang and E.-A. Kim, “Quantum Loop Topography for Machine Learning,” Feb. 2017, doi: 10.1103/PhysRevLett.118.216401.

Unduhan

Telah diserahkan

23-08-2025

Diterima

14-12-2025

Diterbitkan

14-01-2026

Cara Mengutip

[1]
R. Yudistira dan E. Setyowati, “Analisis Bibliometrik Terhadap Tren dan Pertumbuhan Penelitian Quantum Machine Learning”, TEKNOSI, vol. 11, no. 3, hlm. 361–368, Jan 2026.

Terbitan

Bagian

Articles

Artikel Serupa

<< < 1 2 3 4 5 > >> 

Anda juga bisa Mulai pencarian similarity tingkat lanjut untuk artikel ini.