Kajian Performa Efisiensi Infrastruktur Big Data Hemat Energi Menggunakan Single Board Computer dan Framework Apache Spark

Penulis

  • Syahel Rusfi Razaba Universitas Islam Negeri Syarif Hidayatullah Jakarta
  • Muhaza Liebenlito Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta
  • Taufik Edy Sutanto Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta

DOI:

https://doi.org/10.25077/TEKNOSI.v11i2.2025.152-160

Kata Kunci:

Apache Spark, Big Data, Green AI, Klaster SBC, Machine Learning

Abstrak

Meningkatnya kebutuhan komputasi untuk pemrosesan big data dan pelatihan model AI modern berdampak signifikan terhadap konsumsi energi komputasi global. Penelitian ini mengkaji efisiensi energi dan performa klaster Single Board Computer (SBC) dalam menjalankan beberapa algoritma machine learning menggunakan Apache Spark, sebagai alternatif ramah lingkungan terhadap infrastruktur komputasi konvensional. Tiga algoritma digunakan dalam eksperimen ini, yaitu Multi-Layer Perceptron (MLP), Regresi Logistik, dan Random Forest, yang dijalankan secara terdistribusi pada klaster SBC. Evaluasi dilakukan terhadap dua metrik utama, yaitu waktu eksekusi dan konsumsi energi, dengan tiga skenario ukuran dataset dan lima variasi jumlah inti (core). Hasil menunjukkan bahwa klaster SBC mampu mencapai percepatan waktu pelatihan hingga 59.7% pada algoritma Multi-Layer Perceptron dan hingga 49.3% pada Random Forest saat menangani data berukuran besar. Konsumsi daya listrik juga tetap rendah dan stabil, yakni sekitar 11.4 watt untuk konfigurasi satu core dan 12.6 watt untuk konfigurasi multi-core. Temuan ini menegaskan bahwa penggunaan klaster SBC berdaya rendah merupakan pendekatan potensial untuk mendukung komputasi hemat energi dan inisiatif Green AI.

Biografi Penulis

Muhaza Liebenlito, Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta

Muhaza Liebenlito adalah dosen di Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta. Bidang Keahliannya meliputi Medical Imaging dan CFD-DL.

Taufik Edy Sutanto, Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta

Taufik Edy Sutanto adalah dosen di Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta. Bidang Keahliannya meliputi Data Sains dan Analisis Media Sosial.

Referensi

A. de Vries, “The Growing Energy Footprint of Artificial Intelligence,” Joule, vol. 7, no. 10, pp. 2191–2194, 2023, doi: 10.1016/j.joule.2023.09.004.

D. Xiao, “Neuroscience-Inspired Continuous Learning: A Sustainable Approach to AI’s Energy Challenge,” OSF Preprints, 2023, doi: 10.31219/osf.io/twn9q.

J. Cowls, A. Tsamados, M. Taddeo, and L. Floridi, “The AI Gambit: Leveraging Artificial Intelligence to Combat Climate Change—Opportunities, Challenges, and Recommendations,” AI Soc, vol. 38, no. 1, pp. 283–307, 2023, doi: 10.1007/s00146-021-01294-x.

E. García-Martín, C. F. Rodrigues, G. Riley, and H. Grahn, “Estimation of Energy Consumption in Machine Learning,” J Parallel Distrib Comput, vol. 134, pp. 75–88, 2019, doi: 10.1016/j.jpdc.2019.07.007.

H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-All: Train One Network and Specialize It for Efficient Deployment,” 8th International Conference on Learning Representations, ICLR 2020, pp. 1–15, 2020, doi: 10.48550/arXiv.1908.09791.

R. Gitzel, M. C. Platenius-Mohr, and A. Burger, “Estimating the Sustainability of AI Models Based on Theoretical Models and Experimental Data,” atp magazin, vol. 66, no. 3, 2024, doi: 10.17560/atp.v66i3.2691.

E. Strubell, A. Ganesh, and A. Mccallum, “Energy and Policy Considerations for Deep Learning in NLP,” Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3645–3650, 2019, doi: 10.18653/v1/P19-1355.

Y. I. Alzoubi and A. Mishra, “Green Artificial Intelligence Initiatives: Potentials and Challenges,” J Clean Prod, vol. 468, p. 143090, 2024, doi: 10.1016/j.jclepro.2024.143090.

A. Tabbakh, L. Al Amin, M. Islam, G. M. I. Mahmud, I. K. Chowdhury, and M. S. H. Mukta, “Towards Sustainable AI: A Comprehensive Framework for Green AI,” Discover Sustainability, vol. 5, no. 1, 2024, doi: 10.1007/s43621-024-00641-4.

S. Fund, “Sustainable Development Goals.” Accessed: Jan. 27, 2025. [Online]. Available: https://www.un.org/sustainabledevelopment/inequality/

S. Bourhnane, M. R. Abid, K. Zine-Dine, N. Elkamoun, and D. Benhaddou, “High-Performance Computing: A Cost Effective and Energy Efficient Approach,” Advances in Science, Technology and Engineering Systems Journal, vol. 5, no. 6, pp. 1598–1608, 2020, doi: 10.25046/aj0506191.

I. Stamelos, D. Soudris, and C. Kachris, “Performance and Energy Evaluation of Spark Applications on Low-Power SoCs,” 2016 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS), pp. 300–305, 2016, doi: 10.1109/SAMOS.2016.7818362.

J. C. Saffran et al., “A Low-Cost Energy-Efficient Raspberry Pi Cluster for Data Mining Algorithms,” European Conference on Parallel and Distributed Computing Workshops (Euro-Par Workshops), vol. 10104, pp. 788–799, 2016, doi: 10.1007/978-3-319-58943-5_63.

A. Rodriguez-Iglesias, M. J. Martin, and J. Tourino, “Clupiter: A Raspberry Pi Mini-Supercomputer for Educational Purposes,” IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 2400–2405, 2023, doi: 10.1109/TrustCom60117.2023.00338.

Md. F. Ali and R. Z. Khan, “Distributed Computing: An Overview,” International Journal of Advanced Networking and Applications (IJANA), vol. 7, no. 01, pp. 2630–2635, 2015.

A. M. Rajpurohit, R. R. Kumar, R. Kumar, and P. Kumar, “A Review on Apache Spark,” Proceedings of the KILBY 100 7th International Conference on Computing Sciences 2023 (ICCS 2023), 2023, doi: 10.2139/ssrn.4492445.

H. Luu, “Introduction to Apache Spark,” in Beginning Apache Spark 2: With Resilient Distributed Datasets, Spark SQL, Structured Streaming and Spark Machine Learning Library, Berkeley, CA: Apress, 2018, ch. 1, pp. 1–13. doi: 10.1007/978-1-4842-3579-9_1.

E. Shaikh, I. Mohiuddin, Y. Alufaisan, and I. Nahvi, “Apache Spark: A Big Data Processing Engine,” in 2nd IEEE Middle East and North Africa Communications Conference, MENACOMM, Institute of Electrical and Electronics Engineers Inc., 2019, pp. 1–6. doi: 10.1109/MENACOMM46666.2019.8988541.

Apache Spark, “Cluster Mode Overview,” Apache.org. Accessed: May 20, 2025. [Online]. Available: https://spark.apache.org/docs/latest/cluster-overview

D. Shrivastava, S. Chaudhury, and Dr. Jayadeva, “A Data and Model-Parallel, Distributed and Scalable Framework for Training of Deep Networks in Apache Spark,” 2017, [Online]. Available: https://arxiv.org/abs/1708.05840

Apache Spark, “Multilayer Perceptron Classifier,” Apache.org. Accessed: Jul. 07, 2025. [Online]. Available: https://spark.apache.org/docs/latest/ml-classification-regression.html

K. Assi, “Traffic Crash Severity Prediction—A Synergy by Hybrid Principal Component Analysis and Machine Learning Models,” Int J Environ Res Public Health, vol. 17, no. 20, pp. 1–16, 2020, doi: 10.3390/ijerph17207598.

D. Lei, M. Du, H. Chen, Z. Li, and Y. Wu, “Distributed Parallel Sparse Multinomial Logistic Regression,” IEEE Access, vol. 7, pp. 55496–55508, 2019, doi: 10.1109/ACCESS.2019.2913280.

J. Chen et al., “A Parallel Random Forest Algorithm for Big Data in A Spark Cloud Computing Environment,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 4, pp. 919–933, 2017, doi: 10.1109/TPDS.2016.2603511.

Unduhan

Telah diserahkan

07-07-2025

Diterima

27-08-2025

Diterbitkan

06-09-2025

Cara Mengutip

[1]
S. Rusfi Razaba, M. Liebenlito, dan T. Edy Sutanto, “Kajian Performa Efisiensi Infrastruktur Big Data Hemat Energi Menggunakan Single Board Computer dan Framework Apache Spark”, TEKNOSI, vol. 11, no. 2, hlm. 152–160, Sep 2025.

Terbitan

Bagian

Articles

Artikel Serupa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 > >> 

Anda juga bisa Mulai pencarian similarity tingkat lanjut untuk artikel ini.