Analisa Prediksi Kelayakan Pemberian Kredit Pinjaman dengan Metode Random Forest
(1) Jurusan Sistem Informasi Bisnis, Universitas Gunadarma
(2) Jurusan Sistem Informasi Bisnis, Universitas Gunadarma
(*) Corresponding Author
Abstrak
Kata Kunci
Teks Lengkap:
PDFReferensi
Indriati, Vebian. Zuhroh, Idah. Susilowat, Dwi. 2018. Analisis penyaluran kredit modal kerja pada bank umum di Indonesia. Jurnal Ilmu Ekonomi,Vol 2 (3): 529-540.
[2] Ramelda, Susi. 2017. Pengaruh suku bunga kredit dan produk domestik bruto terhadap penyaluran kredit perbankan bank umum pemerintah di indonesia, JOM Fekon Vol 4 (1).
[3] Safitri, Yuliana. 2015. Analisis Kelayakan Pemberian Kredit Usaha Rakyat (KUR) pada PT. Bank Rakyat Indonesia (Persero) Tbk Unit Air Putih Cabang Samarinda. Fakultas EkonomiUniversitas 17 Agustus 1945 Samarinda.
[4] Siringoringo, Renniwaty. 2017. Fungsi Intermediasi Perbankan Indonesia (Studi Kasus Bank Umum Konvensional yang Tercatat di BEI Periode 2012-2016), Jurnal Inspirasi Bisnis dan Manajemen, Vol 1 (2): 135-144
[5] Vanissa Wanika Siburian Ika Elvina Mulyana. 2018. Prediksi Harga Ponsel Menggunakan Metode Random Forest. Prosiding Annual Research Seminar 2018 Vol 4 (1).
[6] Alfarobi, Ibnu. Tutupoly, Agasya, Taransa. Suryanto, Ade. 2018. Komparasi algoritma c4.5, naive bayes, dan random forest untuk klasifikasi data kelulusan mahasiswa jakarta
[7] Hofmann, H. 2000. Statlog (German Credit Dataset) https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german diakses tanggal 15 Januari 2020 pukul 13.56 WIB
[8] S. Pudaruth. 2014. Predicting the price of used cars using machine learning techniques. Int, J, Inf, Comput, Technol. Vol 4 (7). 753–764.
[9] Rismayanti. 2018. Decision Tree Penentuan Masa Studi Mahasiswa Prodi Teknik Informatika (Studi Kasus: Fakultas Teknik dan Komputer Universitas Harapan Medan). Vol 2 (1)
[10] Wahyudin. 2009. Metode Iterative Dischotomizer 3 (ID3) untuk Penyeleksian Penerimaan Mahasiswa Baru, Jurnal Pendidikan Teknologi Informasi dan Komunikasi(PTIK). Vol 1 (2): 5-15.
[11] Suswanto, Deni. 2016. Analisis Perbandingan Metode Machine Learning Pada Prediksi Khasiat Jamu [Skripsi]. Jawa Barat (ID): Institut Pertanian Bogor.
[12] Shannon, C.E. 2001. A mathematical theory of communication. Mobile Computing and Communications Review Vol 5 (1) .
[13] Rahayu, Sri, Erna. Wahono, Satria, Romi. Supriyanto, Catur. 2015. Penerapan Metode Average Gain, Threshold Pruning dan Cost Complexity Pruning untuk Split Atribut pada Algoritma C4.5. Journal of Intelligent Systems, Vol 1 (2).
[14] Nugroho, Sulistyo, Yusuf. Emiliyawati, Nova. 2017. Sistem Klasifikasi Variabel Tingkat Penerimaan Konsumen Terhadap Mobil Menggunakan Metode Random Forest. Jurnal Teknik Elektro Vol 9 (1)
[15] Alpha P, A., & Oslan, Y. 2015. Program Bantu Pemilihan Pakaian dan Bahan Batik Bagi Konsumen dengan Pendekatan Decision Tree Studi Kasus : Toko InBATIK. Jurnal EKSIS Vol 8 (1): halaman 37-46
[16] Han, Jiawei., Micheline Kamber., & Jian Pei. 2012. Data Mining Concepts and Techniques. Elsevier Inc.
[17] Zefriyenni. Yuliana, Ufi, Ira. 2016. Kebijakan Pemberian Kredit Terhadap Penetapan Jumlah Kredit (Studi Khasus Pada Ued-Sp Amanah Sejahtera Sungai Buluh kecamatansingingi Hilirkabupaten Kuantan Singingi Propinsi Riau). Penelitian Bidang Komputer Sains dan Pendidikan Informatika Vol 1 (1) : 72-80.
[18] Bischl, Bernd et.all. 2016. Mlr : Machine Learning in R. Journal of Machine Learning Research. 17(2016) : 1-5
Artikel Statistik
PDF telah dilihat : 1771 kali
Refbacks
- Saat ini tidak ada refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Alamat Redaksi : Departemen Sistem Informasi, Fakultas Teknologi Informasi Universitas Andalas Kampus Limau Manis, Padang 25163, Sumatera Barat email: teknosi@fti.unand.ac.id |
Jumlah Pengunjung :
This work by JSI-Unand and licensed under a CC BY-SA 4.0 International License.