Comparative Analysis of Salinity Readings for Water Quality Monitoring between IoT-Based Sensor Systems and Refractometer

Authors

  • Hadi Hariyanto Center of Excellence for Green Technology, Research Institute for Intelligent Business and Sustainable Economy,Telkom University
  • Gilang Environmental, Social, and Governance (ESG) Group PT Bank Syariah Indonesia

DOI:

https://doi.org/10.25077/TEKNOSI.v11i3.2025.273-281

Keywords:

internet of things, water quality monitoring, salinity measurement, refractometer, comparative readings, precision, accuracy

Abstract

Salinity is among the factors that affect aquaculture water quality, along with pH, temperature, dissolved oxygen (DO), and ammonia. The osmotic pressure is influenced by salinity, which directly affects the aquatic biota. An osmotic pressure increases with increasing salinity in a body of water. The threshold salinity varies between aquatic biotas. If there is an isoosmotic pressure, the aquatic biota will thrive. Specific gravity, electrical conductivity (EC), light refraction, and chlorine titration are commonly used in salinity tests. Refractometer light refraction and water quality monitoring (WQM) salinity sensor EC were the salinity measurements employed in this research. In general, difficulties experienced while employing EC measurements to the tool's accuracy and precision. The salinity sensor was evaluated and verified in this research by comparing the findings of WQM readings with a refractometer over a three-day term. The sensors of 22 WQM devices were tested and validated in 22 BLUPPB (Balai Layanan Usaha Produksi Perikanan Budidaya, Aquaculture Production Business Service Center) ponds. The WQM was put in the center of the pond, and salinity was measured with a refractometer at four spots around the pond's edge. On the first trial, the WQM error and accuracy values were 19.90% and 80.10%, respectively; on the second trial, they were 9.58% and 90.42%, and on the third attempt, they were 16.21% and 83.79%. WQM accuracy was 0.7128, 0.7285, and 0.7174 on the first, second, and third time

Author Biography

Gilang, Environmental, Social, and Governance (ESG) Group PT Bank Syariah Indonesia

Gilang is the Assistant Manager of ESG Strategy and Portfolio Management at Bank Syariah Indonesia. He plays a key role in developing sustainability strategies and implementing ESG principles within the company’s financial portfolio. Gilang has a strong research interest in Sustainability and Technology, particularly in applying strategic innovations to drive sustainable transformation. His educational background in Mechanical and Biosystems Engineering Department from IPB University has shaped a systematic and analytical mindset in designing data-driven and impact-oriented solutions.

References

N. V. Nair and P. K. Nayak, “Exploring Water Quality as a Determinant of Small-Scale Fisheries Vulnerability,” Sustainability, vol. 15, no. 17, p. 13238, Jan. 2023, doi: 10.3390/su151713238.

F. M. Yusoff, W. A. D. Umi, N. M. Ramli, and R. Harun, “Water quality management in aquaculture,” Camb. Prisms Water, vol. 2, no. 8, pp. 1–22, 2024, doi: 10.1017/wat.2024.6.

N. E. Francissca and F. F. Muhsoni, “Laju Pertumbuhan dan Kelangsungan Hidup Ikan Nila (Oreochromis niloticus) pada Salinitas yang Berbeda,” Juv. J. Ilm. Kelaut. Dan Perikan., vol. 2, no. 3, Art. no. 3, Sept. 2021, doi: 10.21107/juvenil.v2i3.11271.

J. A. Prakosa et al., “Perbandingan Pengukuran Salinitas Air antara Metode Daya Hantar Listrik dan Massa Jenis untuk Aplikasinya pada Bidang Pertanian,” Instrumentasi, doi: 10.31153/INSTRUMENTASI.V44I2.221.

D. M. Siltri, Y. Yohandri, and Z. K. Zulhendri Kamus, “Pembuatan Alat Ukur Salinitas Dan Kekeruhan Air Menggunakan Sensor Elektroda Dan Ldr,” J. Sainstek IAIN Batusangkar, vol. 7, no. 2, pp. 126–139, 2015, doi: 10.31958/js.v7i2.133.

L. Gu, X. He, M. Zhang, and H. Lu, “Advances in the Technologies for Marine Salinity Measurement,” J. Mar. Sci. Eng., vol. 10, no. 12, p. 2024, Dec. 2022, doi: 10.3390/jmse10122024.

A. Hyldgård, D. Mortensen, K. Birkelund, O. Hansen, and E. V. Thomsen, “Autonomous multi-sensor micro-system for measurement of ocean water salinity,” Sens. Actuators Phys., vol. 147, no. 2, pp. 474–484, Oct. 2008, doi: 10.1016/j.sna.2008.06.004.

A. Hindayani and N. Hamim, “Akurasi dan Presisi Metode Sekunder Pengukuran Konduktivitas Menggunakan Sel Jones Tipe E untuk Pemantauan Kualitas Air Minum,” Indones. J. Chem. Anal., vol. 5, no. 1, pp. 41–51, 2022, doi: 10.20885/ijca.vol5.iss1.art5.

N. A. M. Jais, A. F. Abdullah, M. S. M. Kassim, M. M. A. Karim, A. M, and N. ‘Atirah Muhadi, “Improved accuracy in IoT-Based water quality monitoring for aquaculture tanks using low-cost sensors: Asian seabass fish farming,” Heliyon, vol. 10, no. 8, Apr. 2024, doi: 10.1016/j.heliyon.2024.e29022.

M. Le Menn and R. Nair, “Review of acoustical and optical techniques to measure absolute salinity of seawater,” Front. Mar. Sci., vol. 9, Nov. 2022, doi: 10.3389/fmars.2022.1031824.

R. Eso, H. T. Mokui, A. Arman, L. Safiuddin, and H. Husein, “Water Quality Monitoring System Based on the Internet of Things (IoT) for Vannamei Shrimp Farming,” ComTech Comput. Math. Eng. Appl., vol. 15, no. 1, pp. 53–63, June 2024, doi: 10.21512/comtech.v15i1.10657.

J. Su et al., “Comparison of Salinity Measurement Based on Optical Refractometer and Electric Conductivity: A Case Study of Urea in Seawater,” IEEE Sens. J., vol. 24, no. 2, pp. 2172–2179, Jan. 2024, doi: 10.1109/JSEN.2023.3337259.

R. Adawiyah, R. Rasyid, and H. Harmadi, “Rancang Bangun Alat Ukur Massa Jenis Zat Cair Otomatis Menggunakan Sensor Load Cell dan Sensor Ultrasonik Berbasis Arduino Uno,” J. Fis. Unand, vol. 10, no. 1, pp. 130–136, Feb. 2021, doi: 10.25077/jfu.10.1.130-136.2021.

N. Afiyat, R. H. Navilla, and M. Hariyadi, “Sistem Monitoring Cairan Infus Berbasis IoT Menggunakan Protokol MQTT,” J. Nas. Tek. Elektro Dan Teknol. Inf., vol. 12, no. 1, Art. no. 1, Feb. 2023, doi: 10.22146/jnteti.v12i1.5862.

R. E. Putri, W. E. Pratama, and I. Ifmalinda, “Application of Capacitive Sensor for Measuring Grain Moisture Content Based on Internet of Things,” J. Keteknikan Pertan., vol. 11, no. 1, Art. no. 1, Apr. 2023, doi: 10.19028/jtep.011.1.29-40.

A. B. Sharma, L. Golubchik, and R. Govindan, “Sensor faults: Detection methods and prevalence in real-world datasets,” ACM Trans Sen Netw, vol. 6, no. 3, p. 23:1-23:39, June 2010, doi: 10.1145/1754414.1754419.

N. Ramanathan et al., “Rapid Deployment with Confidence:Calibration and Fault Detection in Environmental Sensor Networks,” 2006, Accessed: July 22, 2025. [Online]. Available: https://escholarship.org/uc/item/8v26b5qh

R. Riska, N. Nurlina, and R. Karim, Alat Ukur dan Pengukuran. Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Makassar, 2017.

A. P. Seale et al., “Evaluation of a novel recirculating aquaculture center for research, education, and extension at the University of Hawaii at Manoa,” Isr. J. Aquac. - Bamidgeh, vol. 77, no. 3, pp. 56–67, July 2025, doi: 10.46989/001c.142156.

R. H. Baihaqi, H. Haeruddin, and K. Prakoso, “Analisis Hubungan Kualitas Air Tambak Terhadap Laju Pertumbuhan Ikan Nila Salin (Oreochromis niloticus),” J. Pasir Laut, vol. 8, no. 2, pp. 63–70, Sept. 2024, doi: 10.14710/jpl.2024.63545.

T. Syahputra, M. N. Putri, and R. Kurniawan, “Pemijahan Ikan Nila Salin (Oreochromis niloticus) di Balai Besar Perikanan Budidaya Air Payau (BBPBAP) Jepara,” South East Asian Aquac., vol. 1, no. 1, pp. 11–15, July 2023, doi: 10.61761/seaqu.1.1.11-15.

R. P. Shete, A. M. Bongale, and D. Dharrao, “IoT-enabled effective real-time water quality monitoring method for aquaculture,” MethodsX, vol. 13, p. 102906, Aug. 2024, doi: 10.1016/j.mex.2024.102906.

M. Syafirah, R. Eso, and Husein, “IoT-Based Vaname Shrimp Pond Water Quality Monitoring Using the Quamonitor Tool,” ELECTRON J. Ilm. Tek. Elektro, vol. 5, no. 1, pp. 106–116, May 2024, doi: 10.33019/electron.v5i1.149.

T. P. Truong, D. T. Nguyen, and T. Huynh, “Design and Implementation of an IoT-based River Water Salinity Monitoring System Using MSP432,” J. Phys. Conf. Ser., vol. 1878, no. 1, p. 012023, May 2021, doi: 10.1088/1742-6596/1878/1/012023.

J. B. Papolonias, R. Q. Lavilles, and J. I. Miano, “Development of water quality monitoring system for fish farming,” Bull. Electr. Eng. Inform., vol. 14, no. 4, pp. 2962–2974, Aug. 2025, doi: 10.11591/eei.v14i4.7673.

A. Alimuddin, Masjudin, V. Vanessha, C. A. Wicaksana, R. Arafiyah, and I. Saraswati, “Monitoring System Development of Milkfish Salinity on Aquaponic at Green House,” presented at the 2nd International Conference for Smart Agriculture, Food, and Environment (ICSAFE 2021), Atlantis Press, Dec. 2022, pp. 119–125. doi: 10.2991/978-94-6463-090-9_14.

L. Parra, S. Viciano-Tudela, D. Carrasco, S. Sendra, and J. Lloret, “Low-Cost Microcontroller-Based Multiparametric Probe for Coastal Area Monitoring,” Sensors, vol. 23, no. 4, p. 1871, Jan. 2023, doi: 10.3390/s23041871.

TEOS-10, “Notes on the GSW function gsw_SP_from_C,” Feb. 2011. Accessed: Oct. 22, 2025. [Online]. Available: teos-10.org

B. N. Sahoo, P. J. Thomas, P. Thomas, and M. M. Greve, “Antibiofouling Coatings For Marine Sensors: Progress and Perspectives on Materials, Methods, Impacts, and Field Trial Studies,” ACS Sens., vol. 10, no. 3, pp. 1600–1619, Mar. 2025, doi: 10.1021/acssensors.4c02670.

S. Gudic, L. Vrsalovic, A. Matošin, J. Krolo, E. E. Oguzie, and A. Nagode, “Corrosion Behavior of Stainless Steel in Seawater in the Presence of Sulfide,” Appl. Sci., vol. 13, no. 7, p. 4366, Jan. 2023, doi: 10.3390/app13074366.

B. Shi et al., “A Low-Cost Water Depth and Electrical Conductivity Sensor for Detecting Inputs into Urban Stormwater Networks,” Sensors, vol. 21, no. 9, p. 3056, Jan. 2021, doi: 10.3390/s21093056.

N. V. S. R. Nalakurthi et al., “Challenges and Opportunities in Calibrating Low-Cost Environmental Sensors,” Sensors, vol. 24, no. 11, p. 3650, Jan. 2024, doi: 10.3390/s24113650.

Downloads

Submitted

2025-11-06

Accepted

2025-12-18

Published

2025-12-28

How to Cite

[1]
H. Hariyanto and G. Ramadhan, “Comparative Analysis of Salinity Readings for Water Quality Monitoring between IoT-Based Sensor Systems and Refractometer ”, TEKNOSI, vol. 11, no. 3, pp. 273–281, Dec. 2025.

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.