Klasifikasi Rumah Tangga Miskin Menggunakan Ordinal Class Classifier

Penulis

  • Faried Effendy Prodi Sistem Informasi Fakultas Sains dan Teknologi Universitas Airlangga http://orcid.org/0000-0001-5603-4451
  • Purbandini Purbandini Prodi Sistem Informasi Fakultas Sains dan Teknologi Universitas Airlangga

DOI:

https://doi.org/10.25077/TEKNOSI.v4i1.2018.30-36

Kata Kunci:

Data Mining, Ordinal Class Classifier (OCC), Kemiskinan

Abstrak

The Central Bureau of Statistics of Indonesia (BPS) classified the target households into three different categories which were very poor households (RSTM), poor households (RTM), and nearly-poor households (RTSM). BPS need some method that can accelerate the classification process to assist the performance of BPS in order to shorten the processing time. The data scale that used in the classification of poor households was ordinal. Generally, calculations of classification using ordinal asscales only can be found in the software WEKA Ordinal Class Classifier (OCC) that was one of the existing classification in WEKA. OCC could be resolve to attributes that are nominal, numerical, and ordinal. So in this research, OCC would be using to classify poor households. By comparing the algorithms performance there were several stages that need to be traversed. The first was the data collection stage, the second was the data processing stage and information by using preprocessing, the third was the analysis stage with tools WEKA. The fourth was a test stage by counting the value of accuracy, precision, and recall. The last stage was evaluation by comparing actual data with predictive data of the result of calculating system. From the classification process, it can be concluded that OCC has the highest accuracy, precision, and recall level which is 90% (3803) of training set and 10% (423) of testing set with accuracy of 90.5437%, precision 0.919, and recall 0.905.

Referensi

Ben David, A., Sterling, Leon., & Tran TriDat. (2009) Adding monotonicity to learning algorithms may impair their accuracy. Expert Systems with Application, 36, 6627-5534. Defiyanti S & dkk. (2016). Perbandingan Kinerja Algoritma ID3 dan C4.5 dalam Klasifikasi Spam-Mail. Han J, Kamber M. (2001). Data Mining : Concepts and Techniques. Simon Fraser University, Morgan Kaufmann Publishers. Inayah, Riza., & dkk. (2013). Klasifikasi Rumah Tangga Miskin di Kabupaten Jombang Berdasarkan Faktor-faktor yang Mempengaruhi dengan Pendekatan CART (Classification and Regression Trees). Jurnal Sains dan Seni Pomits, Vol.3, No.2, 2337-3520. Jhonpita, Phaiboon., & dkk. (2009). Ordinal Classification Method for the Evaluation of Thai Non-life Insurance Companies. Chulalongkorn University, Bangkok, Thailand Kantardzic, M. (2011). Data Mining, Concepts, Models, Methods, and Algorithms. IEEE Press, A john Wiley & Sons, Inc, Publication. Nugraha C, & dkk. (2016). Penerapan Metode Decision Tree(Data Mining) Untuk Memprediksi Tingkat Kelulusan Siswa Smpn1 Kintamani. Seminar Nasional Vokasi dan Teknologi (SEMNASVOKTEK). Denpasar-Bali, 22 Oktober 2016. Sugiyono. 2012. Metode Penelitian Kuantitatif Kualitatif dan R&D. Bandung: Alfabeta. Turban, et al., & dkk. (2007). Decision Support System and Intelligent System Seventh Edition. New Delhi: Prentice Hal World Bank Institute. 2002. Dasar-dasar Analisis Kemiskinan. Edisi Terjemahan. Badan Pusat Statistik, Jakarta.

Unduhan

Telah diserahkan

16-01-2018

Diterima

24-04-2018

Diterbitkan

01-05-2018

Cara Mengutip

[1]
F. Effendy dan P. Purbandini, “Klasifikasi Rumah Tangga Miskin Menggunakan Ordinal Class Classifier”, TEKNOSI, vol. 4, no. 1, hlm. 30–36, Mei 2018.

Terbitan

Bagian

Articles