Knowledge Discovery: Analisis Sentimen dan Emosi WhatsApp Business dengan Machine learning dan Deep Learning
DOI:
https://doi.org/10.25077/TEKNOSI.v11i3.2025.310-318Kata Kunci:
WhatsApp Business, Analisis Sentimen, Klasifikasi Emosi, Machine learning, Deep LearningAbstrak
WhatsApp Business merupakan salah satu media yang menyediakan layanan komunikasi bisnis secara langsung, cepat, dan efisien. Penelitian ini dilakukan untuk mengevaluasi persepsi pengguna terhadap WhatsApp Business melalui pendekatan analisis sentimen dan klasifikasi emosi secara mendalam terhadap ulasan pengguna. Data yang digunakan sebanyak 3.000 ulasan yang dikumpulkan melalui teknik scraping, kemudian diproses melalui tahapan preprocessing, pelabelan berdasarkan rating, serta klasifikasi emosi secara manual. Klasifikasi emosi menggunakan empat kategori, yaitu bahagia, marah, sedih, dan takut. Penelitian ini mengimplementasikan model Machine learning dan Deep Learning untuk analisis sentimen. Model Machine learning menggunakan metode TF-IDF dengan algoritma SVM dan Random Forest, sedangkan pada model Deep Learning digunakan Tokenizer untuk algoritma LSTM dan CNN. Berdasarkan hasil evaluasi, algoritma SVM mencatatkan akurasi tertinggi sebesar 84,18% dalam klasifikasi sentimen, sementara algoritma LSTM menunjukkan keunggulan pada aspek precision, recall, dan f1-score. Penelitian ini menghasilkan temuan signifikan sebagai bagian dari proses Knowledge Discovery, yakni pola emosi dan sentimen dalam ulasan pengguna yang dapat dimanfaatkan untuk memahami persepsi pengguna secara lebih mendalam serta memberikan masukan relevan pada pengembang untuk meningkatkan kualitas layanan dan fitur aplikasi WhatsApp Business.Referensi
D. Pakkala, J. Kääriäinen, and T. Mätäsniemi, “Improving efficiency and quality of operational industrial production assets information management in customer–vendor interaction,” J. Ind. Inf. Integr., vol. 41, p. 100644, Sep. 2024, doi: 10.1016/j.jii.2024.100644.
C. Hendriyani, S. P. Dwianti, T. Herawaty, and B. Ruslan, “Analisis Pengunaan Whatsapp Business Untuk Meningkatkan Perjualan Dan Kedekatan Dengan Pelanggan Di Pt Saung Angklung Udjo,” AdBispreneur, vol. 5, no. 2, p. 193, 2020, doi: 10.24198/adbispreneur.v5i2.29171.
Asmayanti, A. Syam, M. A. Sikar, B. B. Mamma, Sudarmi, and N. Oktaviyah, “WhatsApp Business Application as a Digital Marketing Strategy of UMKM,” Proc. Int. Conf. Soc. Econ. Business, Educ. (ICSEBE 2021), vol. 205, no. Icsebe 2021, pp. 112–116, 2022, doi: 10.2991/aebmr.k.220107.022.
N. L. A. Sugiyantoro, M. Wijaya, and S. Supriyadi, “Benefits of WhatsApp as a Communication Media on Small Business Social Networks,” J. Soc. Media, vol. 6, no. 1, pp. 1–16, Apr. 2022, doi: 10.26740/jsm.v6n1.p1-16.
R. Sunahri and R. Raihansyah, “the Influence of Whatsapp Business As a Promotional Media on Interest in Buying Zapoeng Store Products (Generation Z in Cirebon City),” Indones. Interdiscip. J. Sharia Econ., vol. 7, no. 2, pp. 2927–2943, 2024, doi: https://doi.org/10.31538/iijse.v7i2.4901.
R. Z. Firdaus, S. H. Wijoyo, and W. Purnomo, “Analisis Sentimen Berbasis Aspek Ulasan Pengguna Aplikasi Alfagift Menggunakan Metode Random Forest dan Pemodelan Topik Latent Dirichlet Allocation,” vol. 9, no. 2, pp. 1–10, 2025.
L. P. Hung and S. Alias, “Beyond Sentiment Analysis: A Review of Recent Trends in Text Based Sentiment Analysis and Emotion Detection,” J. Adv. Comput. Intell. Intell. Informatics, vol. 27, no. 1, pp. 84–95, Jan. 2023, doi: 10.20965/jaciii.2023.p0084.
V. Novalia, K. Ditha Tania, A. Meiriza, and A. Wedhasmara, “Knowledge Discovery of Application Review Using Word Embedding’s Comparison with CNN-LSTM Model on Sentiment Analysis,” in 2024 International Conference on Electrical Engineering and Computer Science (ICECOS), IEEE, Sep. 2024, pp. 234–238. doi: 10.1109/ICECOS63900.2024.10791113.
S. Rohajawati, P. Rahayu, A. T. Misky, K. N. R. Sholehah, N. Rahim, and R. R. H. Setyodewi, “Unveiling Insights: A Knowledge Discovery Approach to Comparing Topic Modeling Techniques in Digital Health Research,” INTENSIF J. Ilm. Penelit. dan Penerapan Teknol. Sist. Inf., vol. 8, no. 1, pp. 108–121, Feb. 2024, doi: 10.29407/intensif.v8i1.22058.
I. Üveges and O. Ring, “HunEmBERT: A Fine-Tuned BERT-Model for Classifying Sentiment and Emotion in Political Communication,” IEEE Access, vol. 11, pp. 60267–60278, 2023, doi: 10.1109/ACCESS.2023.3285536.
D. Amangeldi, A. Usmanova, and P. Shamoi, “Understanding Environmental Posts: Sentiment and Emotion Analysis of Social Media Data,” IEEE Access, vol. 12, pp. 33504–33523, 2024, doi: 10.1109/ACCESS.2024.3371585.
J. J. A. Limbong, I. Sembiring, and K. D. Hartomo, “Analisis Klasifikasi Sentimen Ulasan pada E-Commerce Shopee Berbasis Word Cloud dengan Metode Naive Bayes dan K-Nearest Neighbor,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 2, p. 347, Feb. 2022, doi: 10.25126/jtiik.2022924960.
R. F. P. Pratama and W. Maharani, “Comparative Analysis of Naive Bayes and SVM for Improved Emotion Classification on Social Media,” Edumatic J. Pendidik. Inform., vol. 9, no. 1, pp. 11–20, Apr. 2025, doi: 10.29408/edumatic.v9i1.29087.
D. E. Sondakh, R. C. Maringka, F. P. Ayorbaba, J. S. C. B. T. Mangi, and S. R. Pungus, “Emotion Mining User Review of the BRImo Mobile Banking Application Using the Decision Tree Algorithm,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 12, no. 3, pp. 350–355, Nov. 2023, doi: 10.32736/sisfokom.v12i3.1721.
X. Cui, Z. Zhu, L. Liu, Q. Zhou, and Q. Liu, “Anomaly detection in consumer review analytics for idea generation in product innovation: Comparing machine learning and deep learning techniques,” Technovation, vol. 134, p. 103028, Jun. 2024, doi: 10.1016/j.technovation.2024.103028.
E. M. Mercha and H. Benbrahim, “Machine learning and deep learning for sentiment analysis across languages: A survey,” Neurocomputing, vol. 531, pp. 195–216, Apr. 2023, doi: 10.1016/j.neucom.2023.02.015.
A. Daza, N. D. González Rueda, M. S. Aguilar Sánchez, W. F. Robles Espíritu, and M. E. Chauca Quiñones, “Sentiment Analysis on E-Commerce Product Reviews Using Machine Learning and Deep Learning Algorithms: A Bibliometric Analysis, Systematic Literature Review, Challenges and Future Works,” Int. J. Inf. Manag. Data Insights, vol. 4, no. 2, p. 100267, Nov. 2024, doi: 10.1016/j.jjimei.2024.100267.
D. Vyas, M. Shah, A. Kothari, J. Golakia, and V. Parikh, “Enhancing Digital Forensics: Machine Learning Techniques for Social Media Investigation,” Procedia Comput. Sci., vol. 258, pp. 2290–2301, 2025, doi: 10.1016/j.procs.2025.04.483.
Raksaka Indra Alhaqq, I Made Kurniawan Putra, and Yova Ruldeviyani, “Analisis Sentimen terhadap Penggunaan Aplikasi MySAPK BKN di Google Play Store,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 11, no. 2, pp. 105–113, May 2022, doi: 10.22146/jnteti.v11i2.3528.
S. Mohanty, D. Sahoo, S. Das, A. A. Acharya, and N. Panda, “Sentiment Analysis using CNN for Emotion Extraction to Synthesize Natural Speech,” Procedia Comput. Sci., vol. 258, pp. 2737–2747, 2025, doi: 10.1016/j.procs.2025.04.534.
A. H. Nasution, A. Onan, Y. Murakami, W. Monika, and A. Hanafiah, “Benchmarking Open-Source Large Language Models for Sentiment and Emotion Classification in Indonesian Tweets,” IEEE Access, vol. 13, pp. 94009–94025, 2025, doi: 10.1109/ACCESS.2025.3574629.
R. Sukwadi, R. Magdalena Silitonga, Maria Magdalena Wahyuni, F. Octavian, Y.-T. Jou, and N. T. B. Thu, “Peningkatan Kualitas Layanan Jaringan Restoran Cepat Saji Indonesia: Analisis Sentimen dan Emosi Berbasis Aspek,” J. Teknol. Inf. dan Ilmu Komput., vol. 12, no. 2, pp. 359–368, Apr. 2025, doi: 10.25126/jtiik.2025129416.
J. C. Lapendy, A. A. C. Resky, A. Tenriola, D. F. Surianto, and U. S. Sidin, “Optimizing Sentiment Analysis of Electric Vehicles Through Oversampling Techniques on YouTube Comments,” J. Nas. Pendidik. Tek. Inform., vol. 14, no. 1, pp. 169–182, Mar. 2025, doi: 10.23887/janapati.v14i1.88205.
A. A. Fauzi, A. V. Vitianingsih, S. Kacung, A. L. Maukar, and S. F. A. Wati, “Sentiment Analysis On Tripadvisor Travel Agent Using Random Forest, Support Vector Machines, and Naïve Bayes Methods,” Teknika, vol. 14, no. 1, pp. 150–156, Mar. 2025, doi: 10.34148/teknika.v14i1.1198.
S. I. Putri, E. B. Setiawan, and Y. Sibaroni, “Aspect-Based Sentiment Analysis on Twitter Using Long Short-Term Memory Method,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 2, p. 583, Apr. 2023, doi: 10.30865/mib.v7i2.5637.
M. L. Nugraha and E. B. Setiawan, “Bank Central Asia (BBCA) Stock Price Sentiment Analysis On Twitter Data Using Neural Convolutional Network (CNN) And Bidirectional Long Short-Term Memory (BI-LSTM),” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 3, p. 936, Jul. 2023, doi: 10.30865/mib.v7i3.6120.
N. N. Wilim and R. S. Oetama, “Sentiment Analysis About Indonesian Lawyers Club Television Program Using K-Nearest Neighbor, Naí¯ve Bayes Classifier, And Decision Tree,” IJNMT (International J. New Media Technol., vol. 8, no. 1, pp. 50–56, Jun. 2021, doi: 10.31937/ijnmt.v8i1.1965.
M. D. Dhiyaulhaq and P. H. Gunawan, “Sentiment Analysis of the Jakarta - Bandung Fast Train Project Using the SVM Method,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 4, p. 2128, Oct. 2023, doi: 10.30865/mib.v7i4.6855.
N. Widaad and D. Anggraini, “SENTIMENT ANALYSIS OF CHATGPT APP USER REVIEWS USING SVM AND CNN METHODS,” J. Tek. Inform., vol. 5, no. 6, pp. 1687–1700, Dec. 2024, doi: 10.52436/1.jutif.2024.5.6.4010.
A. K. Darmawan, M. W. Al Wajieh, M. B. Setyawan, T. Yandi, and H. Hoiriyah, “Hoax News Analysis for the Indonesian National Capital Relocation Public Policy with the Support Vector Machine and Random Forest Algorithms,” J. Inf. Syst. Informatics, vol. 5, no. 1, pp. 150–173, Mar. 2023, doi: 10.51519/journalisi.v5i1.438.
A. I. Atmaja, M. Maimunah, and P. Sukmasetya, “Analysis of Labeling and Class-Balancing Effects on Clash of Champions Sentiment Using LSTM and BERT,” J. Inf. Syst. Informatics, vol. 6, no. 4, pp. 2868–2891, Dec. 2024, doi: 10.51519/journalisi.v6i4.929.
E. Y. Hidayat and D. Handayani, “Penerapan 1D-CNN untuk Analisis Sentimen Ulasan Produk Kosmetik Berdasar Female Daily Review,” J. Nas. Teknol. dan Sist. Inf., vol. 8, no. 3, pp. 153–163, Jan. 2023, doi: 10.25077/TEKNOSI.v8i3.2022.153-163.
M. R. Ningsih, J. Unjung, D. A. A. Pertiwi, B. Prasetiyo, and M. A. Muslim, “Optimized Support Vector Machine with Particle Swarm Optimization to Improve the Accuracy Amazon Sentiment Analysis Classification,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, pp. 101–108, Feb. 2024, doi: 10.22219/kinetik.v9i1.1888.
D. S. Comas, G. J. Meschino, and V. L. Ballarin, “Interval-valued fuzzy predicates from labeled data: An approach to data classification and knowledge discovery,” Inf. Sci. (Ny)., vol. 707, p. 122033, Jul. 2025, doi: 10.1016/j.ins.2025.122033.
A. C. Wardhana, Y. Nurhadryani, and S. Wahjuni, “Knowledge Management System Berbasis Web tentang Budidaya Hidroponik untuk Mendukung Smart Society,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, pp. 619–628, May 2020, doi: 10.25126/jtiik.2020732200.
E. Damayanti, A. V. Vitianingsih, S. Kacung, H. Suhartoyo, and A. Lidya Maukar, “Sentiment Analysis of Alfagift Application User Reviews Using Long Short-Term Memory (LSTM) and Support Vector Machine (SVM) Methods,” Decod. J. Pendidik. Teknol. Inf., vol. 4, no. 2, pp. 509–521, Jun. 2024, doi: 10.51454/decode.v4i2.478.
Unduhan
Telah diserahkan
Diterima
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Jurnal Nasional Teknologi dan Sistem Informasi

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Hak cipta untuk artikel ini ditransfer ke Jurnal Nasional Teknologi dan Sistem Informasi (TEKNOSI) jika dan ketika artikel diterima untuk publikasi. Yang bertanda tangan di bawah ini dengan ini mentransfer setiap dan semua hak di dalam dan ke kertas termasuk tanpa batasan semua hak cipta untuk TEKNOSI. Yang bertanda tangan di bawah ini dengan ini menyatakan dan menjamin bahwa makalah tersebut asli dan bahwa ia adalah pembuat makalah, kecuali untuk bahan yang secara jelas diidentifikasi sebagai sumber aslinya, dengan pemberitahuan izin dari pemilik hak cipta jika diperlukan. Yang bertanda tangan di bawah ini menyatakan bahwa ia memiliki kekuatan dan wewenang untuk membuat dan melaksanakan penugasan ini.
Kami menyatakan bahwa:
- Makalah ini belum diterbitkan dalam bentuk yang sama di tempat lain.
- Makalah ini tidak akan dikirimkan di tempat lain untuk publikasi sebelum penerimaan/penolakan oleh Jurnal ini
- Izin hak cipta diperoleh untuk materi yang diterbitkan di tempat lain dan yang memerlukan izin ini untuk reproduksi.
Selanjutnya, Saya/kami dengan ini mentransfer hak publikasi yang tidak terbatas dari makalah yang disebutkan di atas secara keseluruhan kepada TEKNOSI. Transfer hak cipta mencakup hak untuk mereproduksi dan mendistribusikan artikel, termasuk cetak ulang, terjemahan, reproduksi foto, mikroform, bentuk elektronik (offline, online) atau reproduksi lain yang serupa.
Penulis yang sesuai menandatangani dan menerima tanggung jawab untuk merilis materi ini atas nama setiap dan semua penulis bersama. Perjanjian ini harus ditandatangani oleh setidaknya salah satu penulis yang telah memperoleh persetujuan dari rekan penulis jika berlaku. Setelah pengajuan perjanjian ini ditandatangani oleh penulis yang sesuai, perubahan kepengarangan atau dalam urutan penulis yang tercantum tidak akan diterima.
Hak / Syarat dan Ketentuan yang dipertahankan :
- Penulis memiliki semua hak kepemilikan dalam setiap proses, prosedur, atau artikel manufaktur yang dijelaskan dalam Karya ini.
- Penulis dapat mereproduksi atau mengotorisasi orang lain untuk mereproduksi karya ini atau karya turunannya untuk penggunaan pribadi penulis atau untuk penggunaan perusahaan, dengan ketentuan bahwa sumber dan menyatakan hak cipta dimiliki TEKNOSI, salinan tidak digunakan dengan cara apa pun yang menyiratkan pengesahan TEKNOSI atas suatu produk atau layanan dari pihak mana pun, dan salinannya sendiri tidak ditawarkan untuk dijual.
- Meskipun penulis diizinkan untuk menggunakan kembali semua atau sebagian dari karya ini dalam karya lain, ini tidak termasuk mengabulkan permintaan pihak ketiga untuk mencetak ulang, menerbitkan ulang, atau jenis penggunaan ulang lainnya.











