Analisis Pola Belajar Mahasiswa Pada Platform Pembelajaran Daring (Studi Kasus: LeADS UPNVJ)

Penulis

  • Nindy Irzavika Program Studi Sains Data, Universitas Pembangunan Nasional Veteran Jakarta
  • Kharisma Wiati Gusti Program Studi Informatika,, Universitas Pembangunan Nasional Veteran Jakarta
  • Mohamad Thoriq Abdurachman Program Studi Informatika,, Universitas Pembangunan Nasional Veteran Jakarta
  • Bima Saputra Program Studi Sistem Informasi, Universitas Pembangunan Nasional Veteran Jakarta

DOI:

https://doi.org/10.25077/TEKNOSI.v11i3.2025.226-234

Kata Kunci:

big data, learning analytics, pola belajar, random forest, pembelajaran daring

Abstrak

Kebutuhan pembelajaran jarak jauh mendorong pemanfaatan platform pembelajaran daring sebagai media utama yang mendukung proses belajar mengajar di perguruan tinggi. Salah satu tantangan dalam implementasi sistem ini adalah kemampuan untuk memahami pola belajar mahasiswa secara objektif dan berbasis data. Penelitian ini bertujuan untuk mengidentifikasi dan menganalisis pola belajar mahasiswa pada Learning Management System (LMS) LeADS di Universitas Pembangunan Nasional Veteran Jakarta melalui pendekatan analisis big data. Data penelitian berupa log aktivitas mahasiswa pada LMS yang mencakup interasi akadeik seperti melihat materi, mengumpulkan tugas, mengerjakan kuis, dan partisipasi diskusi selama empat semester di program studi Sistem Informasi. Metode penelitian menggunakan pendekatan kuantiatif sesuai dengan siklus hidup big data. Algoritma Random Forest digunakan untuk mengklasifikasikan waktu belajar mahasiswa dengan optimasi parameter menggunakan metode Grid Search. Hasil penelitian menunjukkan bahwa partisipasi aktif relatif rendah yang mengindikasi pola belajar cenderung pasif. Konsistensi dan keterlibatan mahasiswa dalam LMS memiliki pengaruh yang lebih signifikan pada prestasi akademik dibandingkan waktu belajar dominan mahasiswa. Model Random Forest yang dibangun memiliki akurasi 88%, namun performanya belum optimal dalam mengklasifikasi kelas dengan jumlah terbatas. Hail pemenillitian ini menunjukkan pentingnya pemanfaatan data log LMS untuk memahami perilaku belajar mahasiswa secara lebih komprehensif serta membuka peluang pengembangan strategi pembelajaran adaptif berbasis data. Selain itu, hasil penelitian ini memberikan dasar bagi institusi pendidikan untuk merancang intervensi pembelajaran yang lebih efektif dan personal sesuai kebutuhan mahasiswa.

Referensi

LeADS UPNVJ, “LMS LeADS UPNVJ.” Accessed: Jul. 30, 2025. [Online]. Available: https://leads.upnvj.ac.id/#:~:text=Learning%20Management%20System%20,diharapkan%20dapat%20tercapai%20secara%20efektif

Y. A. Abdillah, I. Q. Utami, W. B. M. Setiyawan, M. R. Pratama, I. R. Afani, and A. Y. Pramesti, “Design and Development of Interactive Moodle using Design Thinking to Support Online Learning,” Elinvo (Electronics, Informatics, and Vocational Education), vol. 9, no. 2, pp. 208–219, Oct. 2024, doi: 10.21831/elinvo.v9i2.75255.

S. Muhuri and D. Mukhopadhyay, “Extracting the Relationships Among Students Based on Accessing Pattern of Digital Learning Attributes,” IEEE Transactions on Learning Technologies, vol. 15, no. 6, pp. 747–756, Dec. 2022, doi: 10.1109/TLT.2022.3166537.

D. Shafiq, M. Marjani, R. Habeeb, and D. Asirvatham, “Digital Footprints of Academic Success: An Empirical Analysis of Moodle Logs and Traditional Factors for Student Performance,” Educ Sci (Basel), vol. 15, no. 3, p. 304, Feb. 2025, doi: 10.3390/educsci15030304.

E. Banjarnahor, D. P. Sibarani, B. Wibawanta, D. A. G. Sihotang, and Y. A. S. Abraham, “A Machine Learning Approach to Predicting Student Success Through Data Mining of LMS Moodle Activity Data,” in 2025 4th International Conference on Electronics Representation and Algorithm (ICERA), IEEE, Jun. 2025, pp. 233–238. doi: 10.1109/ICERA66156.2025.11086633.

M. Riestra-González, M. del P. Paule-Ruíz, and F. Ortin, “Massive LMS log data analysis for the early prediction of course-agnostic student performance,” Comput Educ, vol. 163, p. 104108, Apr. 2021, doi: 10.1016/j.compedu.2020.104108.

M. M. Tamada, R. Giusti, and J. F. de Magalhaes Netto, “Predicting Student Performance Based on Logs in Moodle LMS,” in 2021 IEEE Frontiers in Education Conference (FIE), IEEE, Oct. 2021, pp. 1–8. doi: 10.1109/FIE49875.2021.9637274.

S. Maloney et al., “Using LMS Log Data to Explore Student Engagement with Coursework Videos,” Online Learning, vol. 26, no. 4, Dec. 2022, doi: 10.24059/olj.v26i4.2998.

R. C. Raga and J. D. Raga, “A comparison of college faculty and student class activity in an online learning environment using course

log data,” in 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE, Aug. 2017, pp. 1–6. doi: 10.1109/UIC-ATC.2017.8397475.

E. Araka, R. Oboko, E. Maina, and R. Gitonga, “Using Educational Data Mining Techniques to Identify Profiles in Self-Regulated Learning: An Empirical Evaluation,” The International Review of Research in Open and Distributed Learning, vol. 23, no. 1, pp. 131–162, Feb. 2022, doi: 10.19173/irrodl.v22i4.5401.

M. Cantabella, R. Martínez-España, B. Ayuso, J. A. Yáñez, and A. Muñoz, “Analysis of student behavior in learning management systems through a Big Data framework,” Future Generation Computer Systems, vol. 90, pp. 262–272, Jan. 2019, doi: 10.1016/j.future.2018.08.003.

A. Lulli, L. Oneto, and D. Anguita, “Mining Big Data with Random Forests,” Cognit Comput, vol. 11, no. 2, pp. 294–316, Apr. 2019, doi: 10.1007/s12559-018-9615-4.

F. E. EL Habti, “Enhancing Student Performance Prediction in e-Learning Ecosystems Using Machine Learning Techniques,” International Journal of Information and Education Technology, vol. 15, no. 2, pp. 301–311, 2025, doi: 10.18178/ijiet.2025.15.2.2243.

Y. A. Saadoon and R. H. Abdulamir, “Improved Random Forest Algorithm Performance For Big Data,” J Phys Conf Ser, vol. 1897, no. 1, p. 012071, May 2021, doi: 10.1088/1742-6596/1897/1/012071.

R. I. E. Saragih, “Predicting Student Academic Performance Using Random Forest Regression: A Case Study on LMS Behavioral Data,” International Journal of Information System and Innovative Technology, vol. 4, no. 1, pp. 11–14, Jun. 2025, doi: 10.63322/rm0wcg63.

A. Bessadok, E. Abouzinadah, and O. Rabie, “Exploring students digital activities and performances through their activities logged in learning management system using educational data mining approach,” Interactive Technology and Smart Education, vol. 20, no. 1, pp. 58–72, Feb. 2023, doi: 10.1108/ITSE-08-2021-0148.

K. Jawad, M. A. Shah, and M. Tahir, “Students’ Academic Performance and Engagement Prediction in a Virtual Learning Environment Using Random Forest with Data Balancing,” Sustainability, vol. 14, no. 22, p. 14795, Nov. 2022, doi: 10.3390/su142214795.

Á. Hernández-García, C. Cuenca-Enrique, L. Del-Río-Carazo, and S. Iglesias-Pradas, “Exploring the relationship between LMS interactions and academic performance: A Learning Cycle approach,” Comput Human Behav, vol. 155, p. 108183, Jun. 2024, doi: 10.1016/j.chb.2024.108183.

D. Liu, “Study on Online Learning Behavior Analysis and Performance Prediction Based on Improved Random Forest Algorithm,” Creat Educ, vol. 14, no. 08, pp. 1527–1535, 2023, doi: 10.4236/ce.2023.148097.

M. Adnan et al., “Predicting at-Risk Students at Different Percentages of Course Length for Early Intervention Using Machine Learning Models,” IEEE Access, vol. 9, pp. 7519–7539, 2021, doi: 10.1109/ACCESS.2021.3049446.

Y. Bai, M. Bosu, and D. Abuaiadah, “Predicting Learning Outcomes in an Online Learning Platform,” in Proceedings: CITRENZ 2023 Conference, Auckland, 27-29 September, Unitec ePress, Jul. 2024, pp. 78–90. doi: 10.34074/proc.240111.

T. Erl, W. Khattak, and P. Buhler, Big data fundamentals: concepts, drivers & techniques. Prentice Hall Press, 2016.

G. G. Hamshin, A. Y. Omar, O. S. Said, and S. S. Saleh, “Leveraging big data analytics to enhance E-learning services,” Int Neurourol J, vol. 27, no. 4, pp. 1529–1542, 2023.

O. Ovtšarenko, “Innovative techniques for e-learning log data processing: Trends and methods,” Journal of Innovation & Knowledge, vol. 10, no. 5, p. 100765, Sep. 2025, doi: 10.1016/j.jik.2025.100765.

H. Ahmed and M. A. Ismail, “A Structured Approach Towards Big Data Identification,” IEEE Trans Big Data, vol. 9, no. 1, pp. 147–159, Feb. 2023, doi: 10.1109/TBDATA.2021.3139069.

D. García-Gil, J. Luengo, S. García, and F. Herrera, “Enabling Smart Data: Noise filtering in Big Data classification,” Inf Sci (N Y), vol. 479, pp. 135–152, Apr. 2019, doi: 10.1016/j.ins.2018.12.002.

Y. Li et al., “Cluster-based data filtering for manufacturing big data systems,” Journal of Quality Technology, vol. 54, no. 3, pp. 290–302, May 2022, doi: 10.1080/00224065.2021.1889420.

R. Nair and A. Bhagat, “A Life Cycle on Processing Large Dataset - LCPL,” Int J Comput Appl, vol. 179, no. 53, pp. 27–34, Jun. 2018, doi: 10.5120/ijca2018917382.

C. Xie, J. Gao, and C. Tao, “Big Data Validation Case Study,” in 2017 IEEE Third International Conference on Big Data Computing Service and Applications (BigDataService), IEEE, Apr. 2017, pp. 281–286. doi: 10.1109/BigDataService.2017.44.

C. O’HIGGINS, C. KENT, D. HESTER, and S. TAYLOR, “Validation Of Data For Use In Civil Infrastructure Big Data Applications,” in Proceedings of the 14th International Workshop on Structural Health Monitoring, Destech Publications, Inc., Sep. 2023. doi: 10.12783/shm2023/36757.

P. P. Ippolito, “Hyperparameter Tuning,” 2022, pp. 231–251. doi: 10.1007/978-3-030-88389-8_12.

Unduhan

Telah diserahkan

13-08-2025

Diterima

08-12-2025

Diterbitkan

28-12-2025

Cara Mengutip

[1]
N. Irzavika, K. W. Gusti, M. T. Abdurachman, dan B. Saputra, “Analisis Pola Belajar Mahasiswa Pada Platform Pembelajaran Daring (Studi Kasus: LeADS UPNVJ)”, TEKNOSI, vol. 11, no. 3, hlm. 226–234, Des 2025.

Terbitan

Bagian

Articles

Artikel Serupa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 > >> 

Anda juga bisa Mulai pencarian similarity tingkat lanjut untuk artikel ini.