Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation
(1) Jurusan Sistem Informasi, Universitas Andalas
(2) Jurusan Sistem Informasi, Universitas Andalas
(*) Corresponding Author
Abstrak
Kata Kunci
Teks Lengkap:
PDFReferensi
[1] H. Sutanta, A. R. Gunawan, and Y. Wibisono, “Calculation of rice field embankment coefficient using high-resolution satellite imagery,” IOP Conf. Ser. Earth Environ. Sci., vol. 500, p. 012049, Jul. 2020.
[2] Badan Pusat Statistik, “Luas Panen dan Produksi Padi di Indonesia 2019 Hasil Survey Kerangka Sampel Area (KSA),” 2020. [Online]. Available: https://www.bps.go.id/website/materi_ind/materiBrsInd-20200204112508.pdf.
[3] M. Al-Amin, D. Z. Karim, and T. A. Bushra, “Prediction of rice disease from leaves using deep convolution neural network towards a digital agricultural system,” 2019 22nd International Conference on Computer and Information Technology, ICCIT 2019. 2019.
[4] D. Shah, H. Isah, and F. Zulkernine, “Stock market analysis: A review and taxonomy of prediction techniques,” Int. J. Financ. Stud., vol. 7, no. 2, 2019.
[5] H. Putra, N. U. Walmi, and A. D. Kartika, “Data Mining Approach For Prediction Of Rice Production Using Backpropagation Artificial Neural Network Method,” in The International Conference on ASEAN 2019, 2019, pp. 321–326.
[6] N. R. Dzakiyullah, B. Hussin, C. Saleh, and A. M. Handani, “Comparison neural network and support vector machine for production quantity prediction,” Adv. Sci. Lett., vol. 20, no. 10–12, pp. 2129–2133, 2014.
[7] S. García, J. Derrac, J. R. Cano, and F. Herrera, “Prototype selection for nearest neighbor classification: Taxonomy and empirical study,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 3, pp. 417–435, 2012.
[8] G. F. Fan, Y. H. Guo, J. M. Zheng, and W. C. Hong, “Application of the weighted k-nearest neighbor algorithm for short-term load forecasting,” Energies, vol. 12, no. 5, 2019.
[9] N. A. Almansour et al., “Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study,” Comput. Biol. Med., vol. 109, no. October 2018, pp. 101–111, 2019.
[10] S. M. Gorade and P. A. Deo, “A Study Some Data Mining Classification Techniques,” Int. J. Mod. Trends Eng. Res., vol. 4, no. 1, pp. 210–215, 2017.
[11] J. Fei and C. Lu, Adaptive Sliding Mode Control of Dynamic Systems Using Double Loop Recurrent Neural Network Structure, vol. 29, no. 4. 2018.
[12] B. Das, B. Nair, V. K. Reddy, and P. Venkatesh, “Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India,” Int. J. Biometeorol., vol. 62, no. 10, pp. 1809–1822, 2018.
[13] L. Wang, Y. Zeng, and T. Chen, “Back propagation neural network with adaptive differential evolution algorithm for time series forecasting,” Expert Syst. Appl., vol. 42, no. 2, pp. 855–863, 2015.
[14] H. Elarabi, “Comparison of Different Methods of Application of Neural Network on Soil Profile of Khartoum State,” Int. J. Sci. Technol. Soc., vol. 2, no. 3, p. 59, 2014.
[15] N. A. Hamid, N. M. Nawi, R. Ghazali, and M. N. M. Salleh, “Accelerating learning performance of back propagation algorithm by using adaptive gain together with adaptive momentum and adaptive learning rate on classification problems,” Int. J. Softw. Eng. its Appl., vol. 5, no. 4, pp. 31–44, 2011.
[16] O. Krestinskaya, K. N. Salama, and A. P. James, “Learning in memristive neural network architectures using analog backpropagation circuits,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 66, no. 2, pp. 719–732, 2019.
[17] G. Amaral et al., Modern Database Management, vol. 369, no. 1. 2013.
[18] Laurene V. Fausett, Fundamentals Of Neural Networks: Architectures, Algorithms And Applications, no. 888. 2007.
[19] O. M. Rezapour, L. T. Shui, and A. A. Dehghani, “Review of genetic algorithm model for suspended sediment estimation,” Aust. J. Basic Appl. Sci., vol. 4, no. 8, pp. 3354–3359, 2010.
[20] P. C. Chang, Y. W. Wang, and C. H. Liu, “The development of a weighted evolving fuzzy neural network for PCB sales forecasting,” Expert Syst. Appl., vol. 32, no. 1, pp. 86–96, 2007.
[21] P. K. Sethy, N. K. Barpanda, A. K. Rath, and S. K. Behera, “Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network,” J. Ambient Intell. Humaniz. Comput., no. 0123456789, 2020.
[22] A. Wanto, A. P. Windarto, D. Hartama, and I. Parlina, “Use of Binary Sigmoid Function And Linear Identity In Artificial Neural Networks For Forecasting Population Density,” IJISTECH (International J. Inf. Syst. Technol., vol. 1, no. 1, p. 43, 2017.
[23] I. N. da Silva, D. H. Spatti, R. A. Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves, “Artificial neural networks: A practical course,” Artif. Neural Networks A Pract. Course, pp. 1–307, 2016.
[24] G. Deshpande, P. Wang, D. Rangaprakash, and B. Wilamowski, “Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data,” IEEE Trans. Cybern., vol. 45, no. 12, pp. 2668–2679, 2015.
[25] R. B. Santos, M. Rupp, S. J. Bonzi, and A. M. F. Fileti, “Comparison between multilayer feedforward neural networks and a radial basis function network to detect and locate leaks in pipelines transporting gas,” Chem. Eng. Trans., vol. 32, pp. 1375–1380, 2013.
[26] A. A. Heidari, H. Faris, I. Aljarah, and S. Mirjalili, “An efficient hybrid multilayer perceptron neural network with grasshopper optimization,” Soft Comput., vol. 23, no. 17, pp. 7941–7958, 2019.
[27] F. S. Panchal and M. Panchal, “Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Network,” Int. J. Comput. Sci. Mob. Comput., vol. 311, no. 11, pp. 455–464, 2014.
[28] V. T. Widyaningrum and A. S. Romadhon, “Pengaruh Pemberian Momentum Pada,” Semin. Nas. Sains dan Teknol. 2014, no. November, 2014.
[29] V. Prema and K. Uma Rao, “Interactive Graphical User Interface (GUI) for Wind Speed Prediction Using Wavelet and Artificial Neural Network,” J. Inst. Eng. Ser. B, vol. 99, no. 5, pp. 467–477, 2018.
[30] A. Rohani, M. H. Abbaspour-Fard, and S. Abdolahpour, “Prediction of tractor repair and maintenance costs using Artificial Neural Network,” Expert Syst. Appl., vol. 38, no. 7, pp. 8999–9007, 2011.
[31] E. Lee, Y. D. Seo, and Y. G. Kim, “Self-adaptive framework based on MAPE loop for internet of things,” Sensors (Switzerland), vol. 19, no. 13, pp. 1–24, 2019.
[32] Z. CÖMERT and A. KOCAMAZ, “A Study of Artificial Neural Network Training Algorithms for Classification of Cardiotocography Signals,” Bitlis Eren Univ. J. Sci. Technol., vol. 7, no. 2, pp. 93–103, 2017.
[33] G. Ramadhona, B. D. Setiawan, and F. A. Bachtiar, “Prediksi Produktivitas Padi Menggunakan Jaringan Syaraf Tiruan Backpropagation,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 12, pp. 6048–6057, 2018.
Artikel Statistik
PDF telah dilihat : 4195 kali
Refbacks
- Saat ini tidak ada refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Alamat Redaksi : Departemen Sistem Informasi, Fakultas Teknologi Informasi Universitas Andalas Kampus Limau Manis, Padang 25163, Sumatera Barat email: teknosi@fti.unand.ac.id |
Jumlah Pengunjung :
This work by JSI-Unand and licensed under a CC BY-SA 4.0 International License.