Comparison of Transfer Learning Based CNN Architecture for Classification on BreastMNIST

Authors

  • sazila azka adzkia Universitas Adhirajasa Reswara Sanjaya
  • Toni Arifin Program Studi Teknik Informatika, Fakultas Teknologi Informasi, Universitas Adhirajasa Reswara Sanjaya

DOI:

https://doi.org/10.25077/TEKNOSI.v11i2.2025.192-200

Keywords:

CNN, Kanker Payudara, Klasifikasi, Transfer Learning, Ultrasonografi

Abstract

Breast cancer is one of the leading causes of death among women, especially in developing countries like Indonesia. Early detection is very important to increase the cure rate and decrease the mortality rate. This research aims to improve its ability to identify cancer tumors by maximizing the recall value and comparing various transfer learning-based Convolutional Neural Network (CNN) models to find the most optimal model. The CNN architectures studied in this research include MobileNetV2, ResNet50, VGG16, and AlexNet. All models were applied to the BreastMNIST dataset, which consists of ultrasound images with two classes, benign and malignant. Transfer learning was used to overcome the challenge of limited availability of pre-labeled medical image data. The model performance was thoroughly evaluated using accuracy, precision, recall, F1-score and Area Under Curve (AUC) metrics. The results showed that MobileNetV2 provided superior performance with an accuracy of 91.14%, recall of 94%, precision of 93%, F1-score of 94%, and AUC of 0.9607. These findings indicate that the transfer learning-based MobileNetV2 is highly effective in detecting malignant tumors and is the most optimal architecture in this study.

References

A. V. Icanervilia et al., “Early Detection of Breast Cancer in Indonesia: Barriers Identified in a Qualitative Study,” Asian Pacific J. Cancer Prev., vol. 24, no. 8, pp. 2749–2755, 2023, doi: 10.31557/APJCP.2023.24.8.2749.

R. Resmiati and T. Arifin, “Klasifikasi Pasien Kanker Payudara Menggunakan Metode Support Vector Machine dengan Backward Elimination,” Sistemasi, vol. 10, no. 2, p. 381, 2021, doi: 10.32520/stmsi.v10i2.1238.

T. Arifin, I. W. P. Agung, E. Junianto, R. Rachman, I. R. Wibowo, and D. D. Agustin, “Breast cancer identification using machine learning and hyperparameter optimization,” Indones. J. Electr. Eng. Comput. Sci., vol. 36, no. 3, pp. 1620–1630, 2024, doi: 10.11591/ijeecs.v36.i3.pp1620-1630.

L. Wilkinson and T. Gathani, “Understanding Breast Cancer as A Global Health Concern,” Br. J. Radiol., vol. 95, no. 1130, pp. 7–9, 2022, doi: 10.1259/BJR.20211033.

T. K. Dewi, R. A. C. Ruiter, R. Ardi, and K. Massar, “The role of psychosocial variables in breast self-examination practice: Result from focus group discussions in Surabaya, Indonesia,” 2022.

L. Choridah, A. V. Icanervilia, A. A. Rengganis, J. At Thobari, M. J. Postma, and A. D.I. van Asselt, “Comparing the performance of three modalities of breast cancer screening within a combined programme targeting at-risk women in Indonesia: An implementation study,” Glob. Public Health, vol. 18, no. 1, 2023, doi: 10.1080/17441692.2023.2284370.

S. F. Ahmed et al., Deep learning modelling techniques: current progress, applications, advantages, and challenges, vol. 56, no. 11. Springer Netherlands, 2023. doi: 10.1007/s10462-023-10466-8.

S. Balasubramaniam, Y. Velmurugan, D. Jaganathan, and S. Dhanasekaran, “A Modified LeNet CNN for Breast Cancer Diagnosis in Ultrasound Images,” Diagnostics, vol. 13, no. 17, pp. 1–28, 2023, doi: 10.3390/diagnostics13172746.

I. D. Mienye and T. G. Swart, “A Comprehensive Review of Deep Learning Methods and Applications,” Deep Learn. Vis. Underst., pp. 7–58, 2024, [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0925231215017634

G. Chhabra, S. Kumar, D. S. Raha, and D. G. C. Saha, “Analysis of Deep Learning in Real-World Applications: Challenges and Progress,” Tuijin Jishu/Journal Propuls. Technol., vol. 44, no. 2, pp. 281–289, 2023, doi: 10.52783/tjjpt.v44.i2.150.

R. Du, Y. Chen, T. Li, L. Shi, Z. Fei, and Y. Li, “Discrimination of Breast Cancer Based on Ultrasound Images and Convolutional Neural Network,” J. Oncol., vol. 2022, 2022, doi: 10.1155/2022/7733583.

M. D. Ali et al., “Breast Cancer Classification through Meta-Learning Ensemble Technique Using Convolution Neural Networks,” Diagnostics, vol. 13, no. 13, 2023, doi: 10.3390/diagnostics13132242.

A. Al Tawil, A. Shaban, and L. Almazaydeh, “A comparative analysis of convolutional neural networks for breast cancer prediction,” Int. J. Electr. Comput. Eng., vol. 14, no. 3, pp. 3406–3414, 2024, doi: 10.11591/ijece.v14i3.pp3406-3414.

O. Özkaraca et al., “Multiple Brain Tumor Classification with Dense CNN Architecture Using Brain MRI Images,” Life, vol. 13, no. 2, 2023, doi: 10.3390/life13020349.

S. Arooj et al., “Breast Cancer Detection and Classification Empowered With Transfer Learning,” Front. Public Heal., vol. 10, no. July, pp. 1–18, 2022, doi: 10.3389/fpubh.2022.924432.

M. Zourhri, S. Hamida, N. Akouz, B. Cherradi, H. Nhaila, and M. El Khaili, “Deep Learning Technique for Classification of Breast Cancer using Ultrasound Images,” 2023 3rd Int. Conf. Innov. Res. Appl. Sci. Eng. Technol. IRASET 2023, no. April 2024, 2023, doi: 10.1109/IRASET57153.2023.10153069.

A. AlZoubi, F. Lu, Y. Zhu, T. Ying, M. Ahmed, and H. Du, “Classification of breast lesions in ultrasound images using deep convolutional neural networks: transfer learning versus automatic architecture design,” Med. Biol. Eng. Comput., vol. 62, no. 1, pp. 135–149, 2024, doi: 10.1007/s11517-023-02922-y.

V. Azevedo, C. Silva, and I. Dutra, “Quantum transfer learning for breast cancer detection,” Quantum Mach. Intell., vol. 4, no. 1, 2022, doi: 10.1007/s42484-022-00062-4.

M. Alruwaili and W. Gouda, “Automated Breast Cancer Detection Models Based on Transfer Learning,” Sensors, vol. 22, no. 3, 2022, doi: 10.3390/s22030876.

A. W. Salehi et al., “A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope,” Sustain., vol. 15, no. 7, 2023, doi: 10.3390/su15075930.

F. Uysal and M. M. Köse, “Classification of Breast Cancer Ultrasound Images with Deep Learning-Based Models †,” Eng. Proc., vol. 31, no. 1, 2022, doi: 10.3390/ASEC2022-13791.

N. Matondo-Mvula and K. Elleithy, “Breast Cancer Detection with Quanvolutional Neural Networks,” Entropy, vol. 26, no. 8, 2024, doi: 10.3390/e26080630.

J. Yang et al., “MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification,” Sci. Data, vol. 10, no. 1, pp. 1–10, 2023, doi: 10.1038/s41597-022-01721-8.

A. B. M. A. Hossain, J. K. Nisha, and F. Johora, “Breast Cancer Classification from Ultrasound Images using VGG16 Model based Transfer Learning,” Int. J. Image, Graph. Signal Process., vol. 15, no. 1, pp. 12–22, 2023, doi: 10.5815/ijigsp.2023.01.02.

M. Krichen, “Convolutional Neural Networks: A Survey,” Computers, vol. 12, no. 8, pp. 1–41, 2023, doi: 10.3390/computers12080151.

J. Alyami et al., “Cloud Computing-Based Framework for Breast Tumor Image Classification Using Fusion of AlexNet and GLCM Texture Features with Ensemble Multi-Kernel Support Vector Machine (MK-SVM),” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/7403302.

S. Mohapatra, S. Muduly, S. Mohanty, J. V. R. Ravindra, and S. N. Mohanty, “Evaluation of deep learning models for detecting breast cancer using histopathological mammograms Images,” Sustain. Oper. Comput., vol. 3, no. March, pp. 296–302, 2022, doi: 10.1016/j.susoc.2022.06.001.

P. Ashwini, N. Suguna, and N. Vadivelan, “Detection and classification of breast cancer types using VGG16 and ResNet50 deep learning techniques,” Int. J. Electr. Comput. Eng., vol. 14, no. 5, pp. 5481–5488, 2024, doi: 10.11591/ijece.v14i5.pp5481-5488.

D. Shah, M. A. U. Khan, M. Abrar, and M. Tahir, “Optimizing Breast Cancer Detection With an Ensemble Deep Learning Approach,” Int. J. Intell. Syst., vol. 2024, no. 1, 2024, doi: 10.1155/2024/5564649.

J. Lee, J. Park, and Y. Lee, “Towards Efficient Cancer Detection on Mobile Devices,” IEEE Access, vol. 13, no. February, pp. 34613–34626, 2025, doi: 10.1109/ACCESS.2025.3543838.

Y. F. Khan, A. Runani, and B. Ahmed Mir, “Swarm-driven fine-tuned hybrid transfer learningarchitecture on breast ultrasound scans for advanced prognostic,” Int. J. Inf. Technol., no. December 2024, 2024, doi: 10.1007/s41870-024-02329-4.

T. Yang and Y. Ying, “AUC Maximization in the Era of Big Data and AI: A Survey,” ACM Comput. Surv., vol. 55, no. 8, 2022, doi: 10.1145/3554729.

Submitted

2025-07-14

Accepted

2025-09-12

Published

2025-09-16

How to Cite

[1]
sazila azka adzkia and T. Arifin, “Comparison of Transfer Learning Based CNN Architecture for Classification on BreastMNIST”, TEKNOSI, vol. 11, no. 2, pp. 192–200, Sep. 2025.

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.