Perbandingan Arsitektur CNN Berbasis Transfer Learning untuk Klasifikasi pada BreastMNIST

Penulis

  • Sazila Azka Adzkia Program Studi Sistem Informasi, Fakultas Teknologi Informasi, Universitas Adhirajasa Reswara Sanjaya
  • Toni Arifin Program Studi Teknik Informatika, Fakultas Teknologi Informasi, Universitas Adhirajasa Reswara Sanjaya

DOI:

https://doi.org/10.25077/TEKNOSI.v11i2.2025.192-200

Kata Kunci:

CNN, Kanker Payudara, Klasifikasi, Transfer Learning, Ultrasonografi

Abstrak

Kanker payudara adalah salah satu penyebab utama kematian di kalangan Wanita, terutama di negara berkembang seperti Indonesia. Deteksi dini sangat penting untuk meningkatkan tingkat kesembuhan dan menurunkan angka kematian. Penelitian ini bertujuan untuk meningkatkan kemampuannya dalam mengidentifikasi tumor kanker dengan memaksimalkan nilai recall serta membandingkan berbagai model Convolutional Neural Network (CNN) berbasis transfer learning guna menemukan model yang paling optimal. Arsitektur CNN yang dikaji dalam penelitian ini meliputi MobileNetV2, ResNet50, VGG16, dan AlexNet. Seluruh model diterapkan pada dataset BreastMNIST, yang terdiri dari citra ultrasonografi dengan dua kelas, yaitu jinak dan ganas. Transfer learning digunakan untuk mengatasi tantangan akibat keterbatasan ketersediaan data citra medis yang telah diberi label. Kinerja model dievaluasi secara menyeluruh menggunakan metrik akurasi, presisi, recall, F1-score dan Area Under Curve (AUC). Hasil penelitian menunjukkan bahwa MobileNetV2 memberika performa yang unggul dengan akurasi sebesar 91,14%, recall 94%, presisi 93%, F1-score 94%, dan AUC sebesar 0,9607. Temuan ini mengindikasikan bahwa MobileNetV2 berbasis transfer learning sangat efektif dalam mendeteksi tumor ganas dan merupakan arsitektur paling optimal dalam studi ini.

Referensi

A. V. Icanervilia et al., “Early Detection of Breast Cancer in Indonesia: Barriers Identified in a Qualitative Study,” Asian Pacific J. Cancer Prev., vol. 24, no. 8, pp. 2749–2755, 2023, doi: 10.31557/APJCP.2023.24.8.2749.

R. Resmiati and T. Arifin, “Klasifikasi Pasien Kanker Payudara Menggunakan Metode Support Vector Machine dengan Backward Elimination,” Sistemasi, vol. 10, no. 2, p. 381, 2021, doi: 10.32520/stmsi.v10i2.1238.

T. Arifin, I. W. P. Agung, E. Junianto, R. Rachman, I. R. Wibowo, and D. D. Agustin, “Breast cancer identification using machine learning and hyperparameter optimization,” Indones. J. Electr. Eng. Comput. Sci., vol. 36, no. 3, pp. 1620–1630, 2024, doi: 10.11591/ijeecs.v36.i3.pp1620-1630.

L. Wilkinson and T. Gathani, “Understanding Breast Cancer as A Global Health Concern,” Br. J. Radiol., vol. 95, no. 1130, pp. 7–9, 2022, doi: 10.1259/BJR.20211033.

T. K. Dewi, R. A. C. Ruiter, R. Ardi, and K. Massar, “The role of psychosocial variables in breast self-examination practice: Result from focus group discussions in Surabaya, Indonesia,” 2022.

L. Choridah, A. V. Icanervilia, A. A. Rengganis, J. At Thobari, M. J. Postma, and A. D.I. van Asselt, “Comparing the performance of three modalities of breast cancer screening within a combined programme targeting at-risk women in Indonesia: An implementation study,” Glob. Public Health, vol. 18, no. 1, 2023, doi: 10.1080/17441692.2023.2284370.

S. F. Ahmed et al., Deep learning modelling techniques: current progress, applications, advantages, and challenges, vol. 56, no. 11. Springer Netherlands, 2023. doi: 10.1007/s10462-023-10466-8.

S. Balasubramaniam, Y. Velmurugan, D. Jaganathan, and S. Dhanasekaran, “A Modified LeNet CNN for Breast Cancer Diagnosis in Ultrasound Images,” Diagnostics, vol. 13, no. 17, pp. 1–28, 2023, doi: 10.3390/diagnostics13172746.

I. D. Mienye and T. G. Swart, “A Comprehensive Review of Deep Learning Methods and Applications,” Deep Learn. Vis. Underst., pp. 7–58, 2024, [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0925231215017634

G. Chhabra, S. Kumar, D. S. Raha, and D. G. C. Saha, “Analysis of Deep Learning in Real-World Applications: Challenges and Progress,” Tuijin Jishu/Journal Propuls. Technol., vol. 44, no. 2, pp. 281–289, 2023, doi: 10.52783/tjjpt.v44.i2.150.

R. Du, Y. Chen, T. Li, L. Shi, Z. Fei, and Y. Li, “Discrimination of Breast Cancer Based on Ultrasound Images and Convolutional Neural Network,” J. Oncol., vol. 2022, 2022, doi: 10.1155/2022/7733583.

M. D. Ali et al., “Breast Cancer Classification through Meta-Learning Ensemble Technique Using Convolution Neural Networks,” Diagnostics, vol. 13, no. 13, 2023, doi: 10.3390/diagnostics13132242.

A. Al Tawil, A. Shaban, and L. Almazaydeh, “A comparative analysis of convolutional neural networks for breast cancer prediction,” Int. J. Electr. Comput. Eng., vol. 14, no. 3, pp. 3406–3414, 2024, doi: 10.11591/ijece.v14i3.pp3406-3414.

O. Özkaraca et al., “Multiple Brain Tumor Classification with Dense CNN Architecture Using Brain MRI Images,” Life, vol. 13, no. 2, 2023, doi: 10.3390/life13020349.

S. Arooj et al., “Breast Cancer Detection and Classification Empowered With Transfer Learning,” Front. Public Heal., vol. 10, no. July, pp. 1–18, 2022, doi: 10.3389/fpubh.2022.924432.

M. Zourhri, S. Hamida, N. Akouz, B. Cherradi, H. Nhaila, and M. El Khaili, “Deep Learning Technique for Classification of Breast Cancer using Ultrasound Images,” 2023 3rd Int. Conf. Innov. Res. Appl. Sci. Eng. Technol. IRASET 2023, no. April 2024, 2023, doi: 10.1109/IRASET57153.2023.10153069.

A. AlZoubi, F. Lu, Y. Zhu, T. Ying, M. Ahmed, and H. Du, “Classification of breast lesions in ultrasound images using deep convolutional neural networks: transfer learning versus automatic architecture design,” Med. Biol. Eng. Comput., vol. 62, no. 1, pp. 135–149, 2024, doi: 10.1007/s11517-023-02922-y.

V. Azevedo, C. Silva, and I. Dutra, “Quantum transfer learning for breast cancer detection,” Quantum Mach. Intell., vol. 4, no. 1, 2022, doi: 10.1007/s42484-022-00062-4.

M. Alruwaili and W. Gouda, “Automated Breast Cancer Detection Models Based on Transfer Learning,” Sensors, vol. 22, no. 3, 2022, doi: 10.3390/s22030876.

A. W. Salehi et al., “A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope,” Sustain., vol. 15, no. 7, 2023, doi: 10.3390/su15075930.

F. Uysal and M. M. Köse, “Classification of Breast Cancer Ultrasound Images with Deep Learning-Based Models †,” Eng. Proc., vol. 31, no. 1, 2022, doi: 10.3390/ASEC2022-13791.

N. Matondo-Mvula and K. Elleithy, “Breast Cancer Detection with Quanvolutional Neural Networks,” Entropy, vol. 26, no. 8, 2024, doi: 10.3390/e26080630.

J. Yang et al., “MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification,” Sci. Data, vol. 10, no. 1, pp. 1–10, 2023, doi: 10.1038/s41597-022-01721-8.

A. B. M. A. Hossain, J. K. Nisha, and F. Johora, “Breast Cancer Classification from Ultrasound Images using VGG16 Model based Transfer Learning,” Int. J. Image, Graph. Signal Process., vol. 15, no. 1, pp. 12–22, 2023, doi: 10.5815/ijigsp.2023.01.02.

M. Krichen, “Convolutional Neural Networks: A Survey,” Computers, vol. 12, no. 8, pp. 1–41, 2023, doi: 10.3390/computers12080151.

J. Alyami et al., “Cloud Computing-Based Framework for Breast Tumor Image Classification Using Fusion of AlexNet and GLCM Texture Features with Ensemble Multi-Kernel Support Vector Machine (MK-SVM),” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/7403302.

S. Mohapatra, S. Muduly, S. Mohanty, J. V. R. Ravindra, and S. N. Mohanty, “Evaluation of deep learning models for detecting breast cancer using histopathological mammograms Images,” Sustain. Oper. Comput., vol. 3, no. March, pp. 296–302, 2022, doi: 10.1016/j.susoc.2022.06.001.

P. Ashwini, N. Suguna, and N. Vadivelan, “Detection and classification of breast cancer types using VGG16 and ResNet50 deep learning techniques,” Int. J. Electr. Comput. Eng., vol. 14, no. 5, pp. 5481–5488, 2024, doi: 10.11591/ijece.v14i5.pp5481-5488.

D. Shah, M. A. U. Khan, M. Abrar, and M. Tahir, “Optimizing Breast Cancer Detection With an Ensemble Deep Learning Approach,” Int. J. Intell. Syst., vol. 2024, no. 1, 2024, doi: 10.1155/2024/5564649.

J. Lee, J. Park, and Y. Lee, “Towards Efficient Cancer Detection on Mobile Devices,” IEEE Access, vol. 13, no. February, pp. 34613–34626, 2025, doi: 10.1109/ACCESS.2025.3543838.

Y. F. Khan, A. Runani, and B. Ahmed Mir, “Swarm-driven fine-tuned hybrid transfer learningarchitecture on breast ultrasound scans for advanced prognostic,” Int. J. Inf. Technol., no. December 2024, 2024, doi: 10.1007/s41870-024-02329-4.

T. Yang and Y. Ying, “AUC Maximization in the Era of Big Data and AI: A Survey,” ACM Comput. Surv., vol. 55, no. 8, 2022, doi: 10.1145/3554729.

Unduhan

Telah diserahkan

14-07-2025

Diterima

12-09-2025

Diterbitkan

16-09-2025

Cara Mengutip

[1]
S. A. Adzkia dan T. Arifin, “Perbandingan Arsitektur CNN Berbasis Transfer Learning untuk Klasifikasi pada BreastMNIST”, TEKNOSI, vol. 11, no. 2, hlm. 192–200, Sep 2025.

Terbitan

Bagian

Articles

Artikel Serupa

1 2 3 4 5 > >> 

Anda juga bisa Mulai pencarian similarity tingkat lanjut untuk artikel ini.