Pemodelan Text Mining dalam Pengkodean Penyakit Pasien Berdasar Kode ICD 10
(1) Teknik Informatika, Fakultas Teknologi Industri, Universitas Islam Indonesia
(2) Teknik Informatika, Fakultas Teknologi Industri, Universitas Islam Indonesia
(*) Corresponding Author
Abstrak
Kata Kunci
Teks Lengkap:
PDFReferensi
[1] Y. Chen, H. Lu, and L. Li, “Automatic ICD-10 coding algorithm using an improved longest common subsequence based on semantic similarity,” PLoS One, vol. 12, no. 3, p. e0173410, 2017.
[2] H. Dalianis, Clinical text mining: Secondary use of electronic patient records. Springer Nature, 2018.
[3] D. M. Agustine and R. D. Pratiwi, “Hubungan Ketepatan Terminologi Medis dengan Keakuratan Kode Diagnosis Rawat Jalan oleh Petugas Kesehatan di Puskesmas Bambanglipuro Bantul,” Jurnal Kesehatan Vokasional, vol. 2, no. 1, pp. 113–121, 2017.
[4] L. Zhou, C. Cheng, D. Ou, and H. Huang, “Construction of a semi-automatic ICD-10 coding system,” BMC Med Inform Decis Mak, vol. 20, pp. 1–12, 2020.
[5] S. Boytcheva, “Automatic matching of ICD-10 codes to diagnoses in discharge letters,” in Proceedings of the second workshop on biomedical natural language processing, 2011, pp. 11–18.
[6] U. Raja, T. Mitchell, T. Day, and J. M. Hardin, “Text mining in healthcare. Applications and opportunities,” J Healthc Inf Manag, vol. 22, no. 3, pp. 52–56, 2008.
[7] S. Wang et al., “Using Deep Learning for Automatic Icd-10 Classification from FreeText Data,” Eur J Biomed Inform, vol. 16, no. 1, pp. 1–10, 2020.
[8] N. N. Widyastuti, A. A. Bijaksana, and I. L. Sardi, “Analisis word2vec untuk perhitungan kesamaan semantik antar kata,” eProceedings of Engineering, vol. 5, no. 3, 2018.
[9] Y. Wang et al., “MedSTS: a resource for clinical semantic textual similarity,” Lang Resour Eval, vol. 54, pp. 57–72, 2020.
[10] L. Pereira, R. Rijo, C. Silva, and M. Agostinho, “ICD9-based text mining approach to children epilepsy classification,” Procedia Technology, vol. 9, pp. 1351–1360, 2013.
[11] J. Nielsen, “Usability 101: Introduction to Usability,” https://www.nngroup.com/articles/usability-101-introduction-to-usability.
[12] D. R. Prajapat, “Text Classification: BERT vs DNN,” https://eng.zemosolabs.com/text-classification-bert-vs-dnn-b226497c9de7.
[13] M. K. Ross, W. Wei, and L. Ohno-Machado, “‘Big data’ and the electronic health record,” Yearb Med Inform, vol. 23, no. 01, pp. 97–104, 2014.
[14] R. Mahmoud, N. El-Bendary, H. M. O. Mokhtar, and A. E. Hassanien, “ICF based automation system for spinal cord injuries rehabilitation,” in 2014 9th International Conference on Computer Engineering & Systems (ICCES), IEEE, 2014, pp. 192–197.
[15] Y. Mardi, “Data Mining Rekam Medis Untuk Menentukan Penyakit Terbanyak Menggunakan Decision Tree C4. 5,” Jurnal Sains dan Informatika: Research of Science and Informatic, vol. 4, no. 1, pp. 40–53, 2018.
Artikel Statistik
PDF telah dilihat : 87 kali
Refbacks
- Saat ini tidak ada refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
![]() | Alamat Redaksi : Departemen Sistem Informasi, Fakultas Teknologi Informasi Universitas Andalas Kampus Limau Manis, Padang 25163, Sumatera Barat email: teknosi@fti.unand.ac.id |
Jumlah Pengunjung :
This work by JSI-Unand and licensed under a CC BY-SA 4.0 International License.