Analisis Risiko Banjir Berdasarkan Hasil Prediksi Curah Hujan Menggunakan Metode SARIMAX di Kabupaten Sumbawa

Penulis

  • Romi Aprianto Universitas Samawa
  • Akbar Tawaqqal Universitas Mataram
  • Permata Ayu Dwi Puspitasari SDIT Darus Sunnah Sumbawa

DOI:

https://doi.org/10.25077/TEKNOSI.v11i3.2025.207-217

Kata Kunci:

banjir, prediksi curah hujan, SARIMAX, Southern Oscillation Index (SOI), mitigasi bencana

Abstrak

Penelitian ini menganalisis risiko banjir di Kabupaten Sumbawa dengan memprediksi curah hujan bulanan menggunakan model SARIMAX (Seasonal AutoRegressive Integrated Moving Average with Exogenous Variables) dengan memasukkan indeks Southern Oscillation Index (SOI) sebagai variabel eksogen. SARIMAX dipilih karena kemampuannya dalam menangkap pola musiman dan tren curah hujan serta mempertimbangkan pengaruh fenomena iklim global seperti El Niño dan La Niña. Data curah hujan dan SOI yang digunakan mencakup periode November 2000 hingga Oktober 2024. Hasil evaluasi model menunjukkan tingkat akurasi yang cukup baik dengan Mean Absolute Error (MAE) sebesar 37,61 mm dan Root Mean Squared Error (RMSE) sebesar 42,84 mm. Prediksi menunjukkan peningkatan curah hujan signifikan pada bulan Desember hingga Februari, yang menandakan periode risiko banjir tertinggi. Berdasarkan hasil prediksi ini, direkomendasikan beberapa langkah mitigasi, termasuk peningkatan infrastruktur penampungan air, pengelolaan waduk, penguatan sistem drainase, serta edukasi masyarakat untuk kesiapsiagaan banjir. Penelitian ini memberikan kontribusi signifikan dalam pengembangan sistem mitigasi banjir yang lebih efektif di Kabupaten Sumbawa dan dapat diaplikasikan di wilayah lain dengan karakteristik serupa.

Referensi

S. Rajkhowa and J. Sarma, “Climate change and flood risk, global climate change,†in Elsevier eBooks, 2021, pp. 321–339. doi: https://doi.org/10.1016/b978-0-12-822928-6.00012-5.

R. Aprianto, P. A. D. Puspitasari, S. Fitriyanto, and A. Tawaqqal, “Analisis Potensi Bencana Banjir Berdasarkan Hasil Prediksi Curah Hujan di Kabupaten Sumbawa,†Titian Ilmu: Jurnal Ilmiah Multi Sciences, vol. 16, no. 2, pp. 124–133, 2024, doi: https://doi.org/10.30599/jti.v16i2.3436.

S. Mulla, C. B. Pande, and S. K. Singh, “Times Series Forecasting of Monthly Rainfall using Seasonal Auto Regressive Integrated Moving Average with EXogenous Variables (SARIMAX) Model,†Water Resources Management, vol. 38, no. 6, pp. 1825–1846, Mar. 2024, doi: https://doi.org/10.1007/s11269-024-03756-5.

V. K, A. R. Deepti, and F. Basith, Forecasting the Consumer Price Index using SARIMAX Modeling. 2024, pp. 477–483. doi: https://doi.org/10.1109/icici62254.2024.00083.

M. M. Fathi, A. G. Awadallah, A. M. Abdelbaki, and M. Haggag, “A new Budyko framework extension using time series SARIMAX model,†Journal of Hydrology, vol. 570, pp. 827–838, Jan. 2019, doi: https://doi.org/10.1016/j.jhydrol.2019.01.037.

G. Airlangga, “Advanced Forecasting of Maize Production using SARIMAX Models: An Analytical Approach,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 1, p. 361, Jan. 2024, doi: https://doi.org/10.30865/mib.v8i1.7268.

A. Ampountolas, “Modeling and Forecasting Daily Hotel Demand: A Comparison Based on SARIMAX, Neural Networks, and GARCH Models,†Forecasting, vol. 3, no. 3, pp. 580–595, Aug. 2021, doi: https://doi.org/10.3390/forecast3030037.

A. L. M. Serrano et al., “Statistical Comparison of Time Series Models for Forecasting Brazilian Monthly Energy Demand Using Economic, Industrial, and Climatic Exogenous Variables,†Applied Sciences, vol. 14, no. 13, p. 5846, Jul. 2024, doi: https://doi.org/10.3390/app14135846.

C. McHugh, S. Coleman, D. Kerr, and D. McGlynn, Forecasting Day-ahead Electricity Prices with A SARIMAX Model. 2019. doi: https://doi.org/10.1109/ssci44817.2019.9002930.

F. R. Alharbi and D. Csala, “A Seasonal Autoregressive Integrated Moving Average with Exogenous Factors (SARIMAX) Forecasting Model-Based Time Series Approach,†Inventions, vol. 7, no. 4, p. 94, Oct. 2022, doi: https://doi.org/10.3390/inventions7040094.

A. A. Maulana and H. Rosalina, “IMPLEMENTASI METODE SARIMAX UNTUK PREDIKSI CURAH HUJAN JANGKA PENDEK DI PAGERAGEUNG, TASIKMALAYA,†JURNAL SUMBER DAYA AIR, vol. 20, no. 1, pp. 39–50, May 2024, doi: https://doi.org/10.32679/jsda.v20i1.874.

S. S. Nurhayati, A. F. Khasanah, D. A. Revanadillaa, T. B. Herindra, and F. Kartiasih, “Prediksi Pemanasan Global di Provinsi Kalimantan Timur Menggunakan SARIMAX dan Neural Network,†Jurnal Sistem Dan Teknologi Informasi (JustIN), vol. 12, no. 3, p. 394, Jul. 2024, doi: https://doi.org/10.26418/justin.v12i3.74946.

F. Islam and M. A. Imteaz, “Use of Teleconnections to Predict Western Australian Seasonal Rainfall Using ARIMAX Model,†Hydrology, vol. 7, no. 3, p. 52, Aug. 2020, doi: https://doi.org/10.3390/hydrology7030052.

A. Ibrahim and A. O. Musa, “ON THE PERFORMANCE OF SARIMA AND SARIMAX MODEL IN FORECASTING MONTHLY AVERAGE RAINFALL IN KOGI STATE, NIGERIA,†FUDMA Journal of Sciences, vol. 7, no. 6, pp. 24–31, Dec. 2023, doi: https://doi.org/10.33003/fjs-2023-0706-2095.

V. Shah et al., “Forecasting Maximum Temperature Trends with SARIMAX: A Case Study from Ahmedabad, India,†Sustainability, vol. 16, no. 16, p. 7183, Aug. 2024, doi: https://doi.org/10.3390/su16167183.

B. Chatuanramtharnghaka, S. Deb, and Ksh. R. Singh, Short - Term Load Forecasting for IEEE 33 Bus Test System using SARIMAX. 2023, pp. 275–280. Doi: https://doi.org/10.1109/icidea59866.2023.10295066.

M. Zeynoddin and H. Bonakdari, “Investigating methods in data preparation for stochastic rainfall modeling: A case study for Kermanshah synoptic station rainfall data, Iran,†DOAJ (DOAJ: Directory of Open Access Journals), Jun. 2019, doi: https://doi.org/10.22126/arww.2019.1130.

A. Repel, V. Jothiprakash, M. Zeleňáková, H. Hlavatá, and I. Minea, “Temporal Analysis of Daily and 10 Minutes of Rainfall of Poprad Station in Eastern Slovakia,†Hydrology, vol. 7, no. 2, p. 32, Jun. 2020, doi: https://doi.org/10.3390/hydrology7020032.

A. Dixit and S. Jain, “Contemporary Approaches to Analyze Non-stationary Time-series: Some Solutions and Challenges,†Recent Advances in Computer Science and Communications, vol. 16, no. 2, Feb. 2022, doi: https://doi.org/10.2174/2666255815666220523125447.

T. Feng et al., “The comparative analysis of SARIMA, Facebook Prophet, and LSTM for road traffic injury prediction in Northeast China,†Frontiers in Public Health, vol. 10, Jul. 2022, doi: https://doi.org/10.3389/fpubh.2022.946563.

X. Niu, “Analyzing and Predicting Temperature Data in Baoji: A SARIMA Model Approach,†Journal of Progress in Engineering and Physical Science, vol. 2, no. 3, pp. 67–89, Sep. 2023, doi: https://doi.org/10.56397/jpeps.2023.09.08.

Z. Song, Y. Guo, Y. Wu, and J. Ma, “Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model,†PLoS ONE, vol. 14, no. 6, p. e0218626, Jun. 2019, doi: https://doi.org/10.1371/journal.pone.0218626.

B. Yuniasih, W. N. Harahap, and D. A. S. Wardana, “Anomali Iklim El Nino dan La Nina di Indonesia pada 2013-2022,†Agroista Jurnal Agroteknologi, vol. 6, no. 2, pp. 136–143, Feb. 2023, doi: https://doi.org/10.55180/agi.v6i2.332.

M. Sidauruk, H. J. R. Saragih, S. T. Utomo, P. Widodo, and K. Kusuma, “Rainfall Variability in East Kalimantan from Impact of El Nino and La Nina for Effort Disaster Prevention to Support National Security,†International Journal of Progressive Sciences and Technologies, vol. 38, no. 2, p. 431, May 2023, doi: https://doi.org/10.52155/ijpsat.v38.2.5341.

G. Geethapriyan, “Analysis of Extreme Rainfall and its Impacts of Rice Production in Krishnagiri District,†INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT, vol. 07, no. 09, pp. 1–11, Sep. 2023, doi: https://doi.org/10.55041/ijsrem25642.

Y. Alabbad, J. Mount, A. M. Campbell, and I. Demir, “Assessment of transportation system disruption and accessibility to critical amenities during flooding: Iowa case study,†The Science of the Total Environment, vol. 793, p. 148476, Jun. 2021, doi: https://doi.org/10.1016/j.scitotenv.2021.148476.

S. Sarkar, “Pakistan floods pose serious health challenges,†BMJ, p. o2141, Sep. 2022, doi: https://doi.org/10.1136/bmj.o2141.

Unduhan

Telah diserahkan

13-11-2024

Diterima

28-08-2025

Diterbitkan

28-12-2025

Cara Mengutip

[1]
R. Aprianto, A. Tawaqqal, dan P. A. D. Puspitasari, “Analisis Risiko Banjir Berdasarkan Hasil Prediksi Curah Hujan Menggunakan Metode SARIMAX di Kabupaten Sumbawa”, TEKNOSI, vol. 11, no. 3, hlm. 207–217, Des 2025.

Terbitan

Bagian

Articles

Artikel Serupa

<< < 1 2 3 4 

Anda juga bisa Mulai pencarian similarity tingkat lanjut untuk artikel ini.