Aplikasi Data Mining untuk Mencari Pola Asosiasi Tracer Study Menggunakan Algoritma FOLDARM

Lisna zahrotun, Tedy Setiadi, Taufik Mufti Haryadi



Abstrak


A tracer study is an approach that allows higher education institutions to obtain information about possible deficiencies during educational process and learning process and activity planning for improvement. Institute of Student Affairs never do a tracer study data analysis, although tracking of graduate student has been periodically using web-based application but the previous data is still in old format. Tracer study process is only once time in order to completed   accreditation requirement for department. In this research we will focus in developing the application using FOLDARM method for student tracer study. Application is created using the CI Framework programming language with   Mysql as backend database. The test is done using lift ratio method. The result show, association of the patterns are counted by 3, 24% support and confident 45% and it that meet the criteria. By using lift ratio test, the pattern that has the strongest relationship is if the waiting period in finding a job is 3- 5,9 month and first salary is below Rp. 1,572,200,-  and IPK is between 2.75 - 3.50 and graduation age is between 15-24 years old.



Teks Lengkap:

PDF


Referensi


Renny, R. Candra, S. Ruhama, and M. W. SArjono, “Exploring Tracer Study Service in Career Center Web Site of Indonesia higher Education,” Int. Comput. Sience Informaion Secur., vol. 11, pp. 36–39, 2013.

M. Abidin, “Alumni Satisfaction on Curriculum Structure And Learning Process in Indonesian Islamic University,” Int. J. Sci. Res. Educ., vol. 3, no. 2, pp. 2900–2905, 2015.

H. Yuliansyah and L. Zahrotun, “Designing web-based data mining applications to analyze the association rules tracer study at university using a FOLD-growth method,” Int. J. Adnvanced Comput. Res., vol. 6, no. 27, pp. 215–221, 2016.

S. M. P, Y. H. Yadi, and W. Susihono, “Evaluasi Tracer Study Untuk Pembelajaran dengan Pendekatan Ergonomi Makro,” J. Tek. Ind., vol. 1, no. 4, pp. 284–288, 2013.

Y. wong Woon, W. K. Ng, and A. Das, “Fast online dynamic association rule mining,” in In proceedings of the second international conference on web information systems engineering., 2001, pp. 278–287.

B. Santosa, Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu, 2007.

S. Susanto and D. Suryadi, Introduction to data mining gain knowledge of a chunk of data. Yogyakarta: CV ANDI OFFSET., 2010.

R. Soelaiman and M. N. Arini, “Analisis Kinerja Algoritma Fold-Growth dan Fp-growth pada Penggalian Pola Asosiasi,” SNATI (Seminar Nas. Apl. Teknol. Informasi), vol. 2006, pp. 13–18, 2006.

J. Han and M. Kamber, Data Mining Concepts and Techniques. San Diego: Morgan Kaufmann, 2001. [10] B. Akreditasi and N. Perguruan, “Standar dan Prosedur Akreditasi Institusi Perguruan Tinggi,” 2007.

W. Purwaningseh, “Analisis Pencari Kerja Menurut Kelompok Umur, Tingkat Pendidikan, dan Golongan Pokok Jabatan di Kabupaten Kudus,” 2010.


Artikel Statistik

Abstrak telah dilihat : 309 kali
PDF telah dilihat : 405 kali

Refbacks

  • Saat ini tidak ada refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Alamat Redaksi :
Jurusan Sistem Informasi, Fakultas Teknologi Informasi
Universitas Andalas
Kampus Limau Manis, Padang 25163, Sumatera Barat

email: teknosi@fti.unand.ac.id

  Jumlah Pengunjung :

 

Creative Commons License
This work by si.fti.unand.ac.id is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.